How Infertility and Treatments Can Affect Human Placenta Function

Margareta D. Pisarska, M.D. Director, Division of Reproductive Endocrinology and Infertility Director, Center for Reproductive Medicine Professor, Cedars-Sinai Medical Center David Geffen School of Medicine at UCLA

cedars-sinai.org

Disclosures

- Ferring
- Natara

Infertility And Treatment Options

Infertility affects up to 15% of couples

Ovarian Stimulation/IUI

In Vitro Fertilization

4.6% live births in US

1.9% live births in US 8 million babies born worldwide

> Pisarska, et al. *J Clin Endocrinol Metab*, 2018 National Health Statistics Reports 2018 CDC, National Center for Health Statistics 2017

Outcomes based on fertility diagnosis

Significant difference in maternal age and race
Infertility increases risk for cesarean section
Conceptions from infertile couples deliver earlier

	Infertile	Fertile	P-value
	N=277	N=3016	
Maternal Age, years	37.4±5.3	31.5±5.3	<0.0001
Maternal Race, n(%)			0.023
White	193 (69.9)	2066 (68.8)	
Black- or African-American	16 (15.8)	287 (9.6)	
Asian or Asian-American	49 (17.8)	391 (13.0)	
Other	18 (6.5)	260 (8.7)	
BMI, kg/m²	23.3±4.6	23.0±4.6	0.3211
Mode of Conception, n(%)			<0.0001
IVF	136 (49.1)	4 (0.13)	
NIFT	73 (26.4)	4 (0.13)	
Presumed Spontaneous	68 (24.5)	3008 (99.7)	
Cesarean Delivery, n(%)	142 (51.8)	1078 (36.1)	<0.001
Gestational age, weeks	38.9±2.3	39.4±1.7	<0.0001
 Birth weight, grams ^c	3268±634	3317±510	0.1378

vAMA

TABLE 1

Maternal characteristics and maternal and fetal outcomes in singleton gestations conceived either spontaneously or with assisted reproductive technology (ART).

Variable	Spontaneous $(n = 193)$	ART (n = 185)	P value
Maternal characteristic Age (y), mean Race/ethnicity, % white Parity Maternal outcome	45.6 ± 0.1 75.6 1.2 ± 1.8	47.0 ± 2.3 88.1 0.4 ± 0.9	<.05 <.002 <.001
Postpartum hemorrhage, % Estimated blood loss (mL)	3.1	5.9	NS
Vaginal delivery Cesarean delivery	303 ± 104 730 ± 284	324 ± 116 713 ± 137	NS NS
Retained placenta, %	0	2.7	<.02
Transfusion, % Hysterectomy, % Rate of ICU admission, % Length of stay (d), mean Total CD, % Primary CD Repeat CD Fetal outcome	2.1 0 3.2 ± 2.2 49.7 35.3 22.2	1.1 0.5 1.1 4.2 ± 3.9 75.1 71.3 13.5	NS NS <.01 <.001
Gestational age, wk Birth weight, g NICU admission rate, % Apgar score at 5 min	38.9 ± 2.4 $3,318 \pm 527$ 1.5 8.8 ± 1		NS NS NS NS

Note: CD = cesarean delivery; ICU = intensive care unit; NICU = neonatal intensive care unit; NS = not significant.

Jackson. Pregnancy in very advanced maternal age. Fertil Steril 2015.

ART were significantly older More likely to be white More likely to be pulliparous

- More likely to be nulliparous
- Significantly increased risk for cesarean delivery
- Risk of retained placenta was also significantly higher

Risks associated with infertility and fertility treatments

	spontaneous	NIFT	IVF
gestational diabetes		^	^
pregnancy induced hypertension		↑	^
placenta previa		-	1
placental abruption		1	1
postpartum hemorrhage			1
preterm birth			^
Low birth weight/SGA		1	1
perinatal mortality		1	1

Shevell T, 2005 Obstet Gynecol 106:1039-1045 Qin J, 2016 Fertil and Steril 2016 Pisarska M, JCEM 2018

Significant maternal morbidity

Table 2. Rates of Most Commonly Reported and Statistically Significant Severe Maternal MorbidityIndicators and Overall Rate of Any Indicator During Delivery Hospitalizations or PostpartumReadmissions Per 10,000 Deliveries by Assisted Reproductive Technology Status, 2008–2012

	Singleto	on Pregnai	ncies	Multiple Pregnancies			
Indicator	Non-ART	ART	P *	Non-ART	ART	P *	
Blood transfusion	36	77	<.001	215	200	.567	
Disseminated intravascular coagulation	20	46	<.001	68	98	.042	
Mechanical ventilation	18	33	.001	105	143	.034	
Adult respiratory distress syndrome	12	21	.009	49	48	1	
Eclampsia	11	13	.656	34	41	.488	
Heart failure during procedure or surgery	11	23	.001	26	25	1	
Hysterectomy	9	27	<.001	38	34	.892	
Sepsis	7	15	.004	22	32	.227	
Acute renal failure	6	18	<.001	30	32	.881	
Puerperal cerebrovascular disorders	6	9	.324	19	18	1	
Operations on heart and pericardium	6	12	.041	21	23	.720	
Internal injuries of thorax, abdomen, and pelvis	3	14	<.001	10	25	.018	
Shock	4	14	<.001	22	16	.585	
Overall	126	273	<.001	539	604	.089	

ART, assisted reproductive technology.

Data are n unless otherwise specified.

* Holm-Bonferroni corrected $P \leq .001$ denotes statistical significance of Pearson χ^2 and Fisher exact tests.

Significant Maternal Morbidity (SMM)

TABLE 1

•Using Gold Standard guidelines true SMM cases (Complications)

- hemorrhage
- hypertension/neurologic
- renal, sepsis
- pulmonary, cardiac ICU/invasive monitoring
- surgical, bladder, and bowel
- Anesthesia

•Higher rate of women utilizing fertility treatment that has significant maternal morbidity

Baseline characteristics of the maternal cohort.

Characteristic	SMM (n = 69)	No SMM (n = 6,474)	P value
Maternal age (y), n (SD)	34.0 (6.7)	32.9 (5.30)	.18
Maternal race			.001
White	36 (52.2)		
Black	14 (20.3)		
Asian	14 (20.3)	798 (12.4)	
Other	5 (7.3)	512 (8.0)	
Body mass index (kg/m ²)			.50
18.5-24.9	9 (13.6)	1,220 (18.9)	
25-29.9	29 (43.9)	3,021 (46.8)	
≥30	28 (42.4)	2,012 (34.3)	
Multifetal pregnancy	7 (10 1)		< 001
Mode of conception			.004
IVF	7 (10.1)	239 (3.7)	
NIFT	3 (4.4)	106 (1.6)	
Spontaneous	59 (85.5)		
Preterm delivery (<37 WK)	25 (36.8)	470 (7.4)	<.001
Cesarean delivery	55 (79.7)	2,338 (36.1)	<.001
Health insurance			<.001
Government	20 (29)	831 (13)	
Private	49 (71)	5,583 (87)	
Comorbidities			
Coronary heart disease	5(7)	26 (0.4)	<.001
Diabetes mellitus	10 (15)	455 (7)	0.03
Hypertension	3 (4)	57 (1)	0.03
Note: Data presented as n (%), unle	ss stated otherwise.	IVF = in vitro fertiliza	tion: NIFT =

Note: Data presented as n (%), unless stated otherwise. IVF = in vitro fertilization; NIFT = non-IVF fertility treatment; SMM = severe maternal morbidity.

Wang. Fertility treatment and SMM. Fertil Steril 2016.

Infertility Diagnosis and Maternal Morbidity

- Insurance Claims Database
- Fertile n=525,695
- *Infertile n=19,658*

Any severe maternal morbidity including the morbidities noted were associated with the diagnosis of infertility independent of treatment

TABLE 3 Risk of severe maternal morbidity by fertility group ^a								
	AOR (95% CI)							
	Infertile							
	Treatment vs fertile	Diagnosis vs fertile	Testing vs fertile	All infertile vs fertile				
Severe maternal morbidity indicator								
Any severe maternal morbidity indicator	1.24 (1.12-1.37)	1.22 (1.13-1.33)	1.09 (0.81-1.45)	1.22 (1.14-1.31)				
Acute myocardial infarction	1.68 (0.52-5.46)	0.90 (0.22-3.69)	b	1.33 (0.52-3.36)				
Acute renal failure	1.03 (0.53-2.02)	0.86 (0.47-1.57)	b	0.84 (0.51-1.38)				
Acute respiratory distress	1.57 (1.03-2.38)	1.14 (0.76-1.71)	b	1.26 (0.93-1.70)				
Amniotic fluid embolism	1.61 (0.50-5.18)	1.10 (0.35-3.49)	b	1.31 (0.57-3.02)				
Aneurysm	b	b	b	b				
Cardiac arrest or ventricular fibrillation	1.22 (0.29-5.04)	2.68 (1.16-6.20)	b	1.94 (0.88-4.31)				
Disseminated intravascular coagulation	1.67 (1.33-2.09)	1.34 (1.08-1.66)	1.57 (0.81-3.04)	1.48 (1.26-1.73)				
Eclampsia	1.49 (1.02-2.17)	1.30 (0.95-1.79)	0.41 (0.06-2.91)	1.37 (1.05-1.79)				
Heart failure during procedure or surgery	1.27 (0.85-1.91)	1.75 (1.3-2.36)	0.89 (0.22-3.57)	1.54 (1.21-1.97)				
Internal injuries of the thorax, abdomen, or pelvis	1.61 (0.92-2.84)	1.52 (0.95-2.45)	0.99 (0.14-7.08)	1.77 (1.20-2.61)				
Intracranial injuries	1.27 (0.31-5.28)	2.64 (1.14-6.10)	b	2.05 (0.97-4.32)				
Puerperal cardiovascular disorders	1.05 (0.77-1.43)	1.41 (1.13-1.75)	1.65 (0.81-3.35)	0.94 (0.66-1.33)				
Pulmonary edema	1.85 (1.09-3.14)	2.05 (1.36-3.08)	b	2.18 (1.54-3.10)				
Severe anesthesia complications	0.33 (0.08-1.35)	0.85 (0.42-1.71)	b	1.13 (0.49-2.60)				
Sepsis	1.04 (0.58-1.85)	0.70 (0.40-1.21)	1.37 (0.34-5.51)	0.90 (0.59-1.36)				
Shock	1.76 (1.02-3.05)	1.06 (0.58-1.93)	b	1.14 (0.72-1.80)				
Sickle cell anemia with crisis	b	b	b	b				
Thrombolic embolism	1.35 (0.86-2.13)	1.77 (1.27-2.49)	1.21 (0.30-4.88)	1.58 (1.14-2.17)				
Blood transfusion	1.69 (1.39-2.07)	1.30 (1.08-1.56)	1.44 (0.79-2.62)	1.50 (1.30-1.72)				
Cardiology monitoring	1.01 (0.87-1.18)	1.14 (1.02-1.27)	0.83 (0.53-1.29)	1.09 (0.997-1.20)				
Conversion of cardiac rhythm	0.72 (0.10-5.29)	0.95 (0.23-3.88)	b	0.83 (0.26-2.68)				
Hysterectomy	1.61 (1.03-2.52)	1.10 (0.69-1.77)	1.53 (0.38-6.16)	1.35 (0.97-1.88)				
Operations on the heart and pericardium	1.44 (0.86-2.39)	1.09 (0.67-1.77)	2.23 (0.72-6.96)	1.12 (0.77-1.64)				
Temporary tracheostomy	ь	ь	b	Ь				
Ventilation	0.95 (0.61-1.47)	1.08 (0.78-1.51)	ь	0.91 (0.69-1.20)				
Intubation	0.92 (0.29-2.92)	0.98 (0.40-2.39)	b	0.84 (0.39-1.80)				
AOR, adjusted odds ratio; Cl, confidence interval.								

* A generalized estimating equation (GEE) model was used to estimate the odds ratios of the diseases between infertile and control groups, adjusted for maternal age, year of delivery, nulliparity, delivery mode, preterm birth, obesity, smoking, hypertension, diabetes, number of prenatal visits, race and ethnicity, and education, accounting for women who had more than 1 delivery of a singleton during the database enrollment period; ^b Calculation of AOR and 95% Cl was not possible because of small numbers.

Murugappan et al. Maternal morbidity among infertile women. Am J Obstet Gynecol 2020.

Preterm, late preterm, early term, and term deliveries between infertile and fertile women

	Infertile	Fertile	P value
	N=277	N=3016	
<34 weeks	8 (2.9)	39 (1.3)	0.032 ¹
34-36 6/7 weeks	23 (8.3)	130 (4.3)	0.003 ²
37-38 6/7 weeks	58 (20.9)	536 (17.8)	0.19 ³
≥39 weeks	188 (67.9)	2311(76.6)	0.0014

Adjusted for maternal age and race

Late preterm infants (34 0/7 to 36 6/7 weeks)

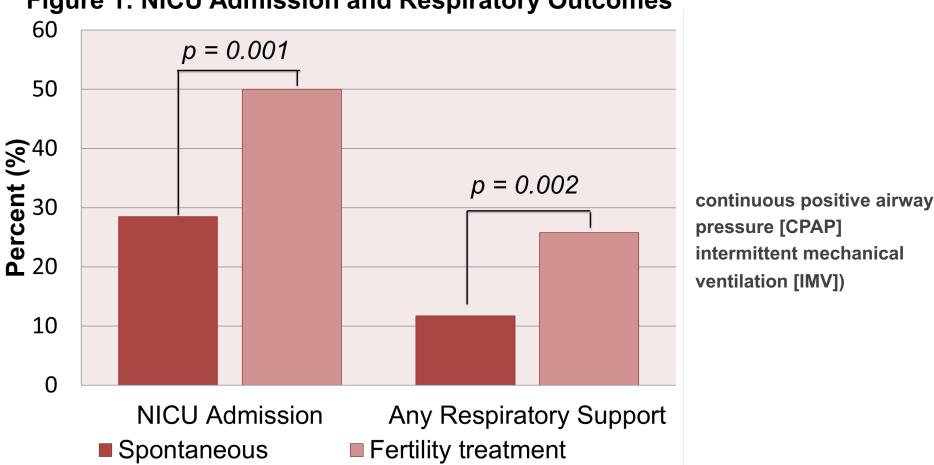


Figure 1: NICU Admission and Respiratory Outcomes

Table 4. Odds Ratio for Any Birth Defects According to Type of Assisted Conception and Multiplicity.*								
Type of Assisted Conception Singleton Births								
	Defect	Unadjusted Odds Ratio	Adjusted Odds Ratio†	_				
	no. of births with defect/ total no. of births			_				
Any	361/4333	1.45 (1.30–1.63)	1.28 (1.14–1.43)					
IVF								
Fresh- or frozen-embryo cycles	105/1484	1.25 (1.02–1.52)	1.06 (0.87–1.30)	-				
Fresh-embryo cycles	71/1005	1.25 (0.98–1.59)	1.05 (0.82–1.35)					
Frozen-embryo cycles	34/479	1.24 (0.88–1.76)	1.08 (0.76–1.53)					
ICSI								
Fresh- or frozen-embryo cycles	91/939	1.72 (1.38–2.15)	1.55 (1.24–1.94)					
Fresh-embryo cycles	76/713	1.95 (1.53–2.48)	1.73 (1.35–2.21)					
Frozen-embryo cycles	15/226	1.17 (0.70–1.97)	1.10 (0.65–1.85)					
GIFT	34/319	1.98 (1.40–2.80)	1.73 (1.21–2.47)					
Intrauterine insemination	54/580	1.67 (1.25–2.23)	1.46 (1.09–1.95)					
Donor insemination	36/428	1.51 (1.08–2.11)	1.37 (0.98–1.92)					
Ovulation induction	19/306	1.08 (0.68–1.74)	0.99 (0.62–1.59)					
Clomiphene citrate at home	7/36	3.87 (1.58–9.51)	3.19 (1.32–7.69)					
Other∬	15/241	1.07 (0.63–1.82)	0.96 (0.56–1.63)					
Spontaneous conception after previous birth from assisted reproductive technology	96/1306	1.27 (1.02–1.59)	1.26 (1.01–1.57)					
Infertile but no history of treatment with assisted reproductive technology	52/600	1.54 (1.15–2.05)	1.37 (1.02–1.83)	~				
No use of assisted reproductive technology and fertile	16,841/293,314	1.00	1.00	_				

Davies, et al, NEJM 2012; 366:1803-13

Risks of Birth Defects

Table III Risk of birth defects among singletons by maternal characteristics and mode of conception.*

		Major b	irth defect**	Blas	togenesis	Card	iovascular	Musc	uloskeletal	Genito	urinary-male	Chi	romosomal	Any b	irth defect
		AOR	95% CI	AOR	95% CI	AOR	95% CI	AOR	95% CI	AOR	95% CI	AOR	95% CI	AOR	95% CI
Group	Naturally conceived	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
	OI/IUI conceived	1.16	0.97, 1.38	1.11	0.66, 1.85	0.96	0.74, 1.24	1.29	0.86, 1.94	1.25	0.90, 1.73	1.00	0.60, 1.68	1.12	0.99, 1.26
	ART siblings	1.08	0.98, 1.19	1.19	0.90, 1.58	1.10	0.96, 1.26	1.32	1.04, 1.67	0.96	0.78, 1.19	0.94	0.69, 1.27	1.15	1.08, 1.23
	ART-auto-fresh, no ICSI	1.18	1.05, 1.32	0.99	0.69, 1.42	1.20	1.03, 1.40	1.19	0.89, 1.57	1.11	0.88, 1.41	0.65	0.44, 0.95	1.18	1.09, 1.27
	ART-auto-fresh, yes ICSI-no MF	1.30	1.16, 1.45	1.49	1.08, 2.05	1.28	1.10, 1.48	1.34	1.01, 1.78	1.09	0.85, 1.39	0.89	0.63, 1.26	1.22	1.13, 1.32
	ART-auto-fresh, yes ICSI-yes MF	1.42	1.28, 1.57	1.56	1.17, 2.08	1.45	1.27, 1.66	1.25	0.96, 1.64	1.33	1.08, 1.65	0.93	0.66, 1.33	1.38	1.29, 1.48
Maternal	18-29	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
Age (years)	30-34	1.09	1.05, 1.12	0.92	0.83, 1.02	1.17	1.11, 1.23	0.97	0.89, 1.06	1.08	1.00, 1.17	1.76	1.52, 2.03	1.07	1.05, 1.10
	35-37	1.11	1.06, 1.16	0.83	0.72, 0.96	1.34	1.26, 1.43	0.91	0.81, 1.04	1.11	1.00, 1.23	3.46	2.95, 4.05	1.13	1.10, 1.17
	38-40	1.10	1.03, 1.17	0.96	0.80, 1.14	1.52	1.40, 1.64	0.97	0.83, 1.14	1.03	0.90, 1.18	6.79	5.800, 7.96	1.23	1.18, 1.28
	41-43	1.13	1.03, 1.24	1.10	0.85, 1.43	1.77	1.59, 1.97	1.12	0.89, 1.42	1.19	0.98, 1.45	15.4	12.99, 18.25	1.42	1.34, 1.51
	≥44	1.30	1.07, 1.59	1.80	1.12, 2.88	2.58	2.11, 3.16	1.42	0.89, 2.26	1.32	0.87, 2.00	28.7	22.47, 36.67	1.68	1.49, 1.90
BMI (kg/m ²)	12-24	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
	25-29	1.01	0.97, 1.06	1.00	0.88, 1.14	1.03	0.96, 1.09	1.04	0.93, 1.17	0.99	0.89, 1.09	1.10	0.94, 1.30	1.00	0.97, 1.04
	30-59	1.18	1.12, 1.24	1.10	0.96, 1.26	1.23	1.16, 1.31	1.25	1.11, 1.41	0.96	0.86, 1.08	1.09	0.92, 1.29	1.13	1.10, 1.17
Diabetes	None	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
	Pre- or gestational	1.34	1.27, 1.41	1.46	1.25, 1.69	1.47	1.37, 1.57	1.05	0.90, 1.22	1.14	1.01, 1.30	1.11	0.93, 1.32	1.26	1.21, 1.30
Hypertension	None	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
	Pre- or gestational	1.43	1.36, 1.51	1.13	0.96, 1.33	1.49	1.40, 1.60	1.04	0.90, 1.21	1.71	1.54, 1.91	1.00	0.83, 1.21	1.34	1.29, 1.39
Infant sex	Female	1.00	Reference	1.00	Reference	1.00	Reference	00.1	Reference	_	_	1.00	Reference	1.00	Reference
	Male	1.53	1.49, 1.58	1.17	1.08, 1.27	0.96	0.92, 1.00	1.44	1.34, 1.54	-	-	1.01	0.92, 1.11	1.55	1.52, 1.58

*Models adjusted for all factors listed above, as well as maternal race and ethnicity, education, parity, and State and year of birth. ART births limited to autologous-fresh with partner ejaculated sperm. Bolded values are significantly increased. **Major defects are limited to nonchromosomal only.

***Group (n, children): naturally conceived (1 066 652); OI/IUI conceived (6899); non-ART siblings (22 821); ART-auto-fresh, no ICSI (all infertility diagnoses, no ICSI: 16 433); ART-auto-fresh, yes ICSI-no MF (yes ICSI, no male factor diagnosis: 14 071); ART-auto-fresh, yes ICSI-yes MF (yes ICSI, yes male factor diagnosis: 16 629). AOR, adjusted odds ratio.

Major birth defects as defined by the National Birth Defects Prevention Network (NBDPN) (see Supplementary Table SI).

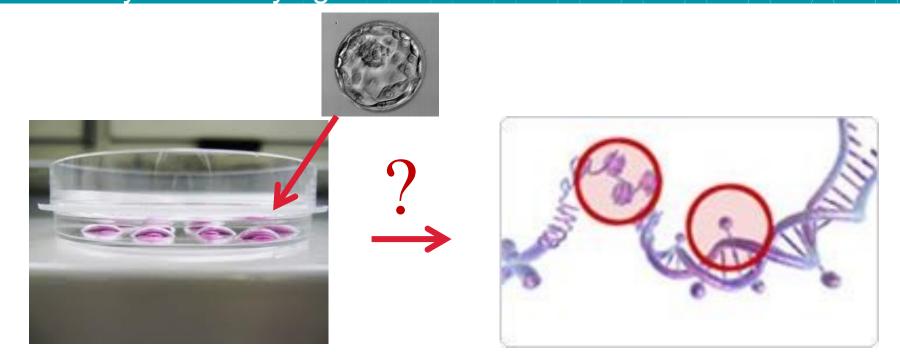
Any birth defect is any ICD-9 code with the first 3 digits 740-759, and any ICD-10 code inclusive of Q00.0-07.9, 10-18.9, 20-28.9, 30-45.9, 50-56.4, 60-87.89 and 89-99.9.

Risk Assessment

 Despite increased risk of adverse outcomes, the overall incidence and relative risk of these outcomes is low. Table 1. Risks Associated With In VitroFertilization–Conceived PregnanciesCompared With Naturally ConceivedCounterparts–Singleton, Twin, andNonstratified Gestations

Risk	Absolute Risk
Among singleton pregnancies	
Preterm delivery ⁵⁰	Half day earlier IVF-ICSI vs SC
,	9.7% IVF-ICSI vs 7.9% SC
Low birth weight delivery ⁵⁰	33 g less IVF–ICSI vs SC
,	6.8% IVF-ICSI vs 4.9% SC
Severe maternal morbidity	273/10,000 IVF-ICSI vs
(blood transfusion most common) ⁶³	126/10,000 SC
Among twin pregnancies	
Monozygotic twins ^{31,32}	1.2-2.5% IVF-ICSI vs 0.4% SC
Preterm delivery ^{26–28}	Comparable
Low birth weight	Comparable
delivery ^{26–28}	
Not stratified	
DNA methylation ^{71,72}	Comparable
Imprinting disorder ^{71,72}	0.15% IVF-ICSI vs 0.02% SC
Any cardiac defect including ASD, VSD ⁷⁰	1.30% IVF–ICSI vs 0.68% SC

IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; SC, spontaneous conception; ASD, atrial septal defect; VSD, ventricular septal defect.



Infertility is the contributor to outcomes associated with placentation

- Maternal morbidity is associated with diagnosis of infertility regardless of treatment
- Adverse outcomes are associated with both IVF and NIFT
- Congenital anomalies are associated with underlying infertility
- Time to pregnancy increases risk of congenital malformations
- Models to study the effect of IVF need to include an infertile cohort
- Outcomes are related to placentation defects
 - Mother diabetes, hypertension, preeclampsia, placenta previa and accreta, retained placenta and abruption as well as SMM
 - Child- prematurity, growth restriction, and birth defects

Are the adverse outcomes associated with ART due to the in vitro fertilization process, the treatments or the inherent infertility we are trying to overcome?

Prevalence of ART in patients with BWS

TABLE 3

Prevalence of ART in patients with BWS.

Reference no.	Type of study	No. of BWS cases	Prevalence of ART in BWS cohort (cases)	Prevalence of ART in reference population	Type of ART	Association between BWS and ART
62 ^a	Case series	65 ^b	4.6% (3 ^b)	0.8%	IVF/ICSI	Suggestive
63	Case series	149	4% (6°)	1.2%	3 IVF/3 ICSI	Suggestive
64	Case series	149	4% (6°)	1.3%	4 IVF/2 ICSI	Suggestive
65	Case-control	37	10.81% ^d (4)	0.67% ^d	3 IVF/1 ICSI	Suggestive
66 ^a	Case-series	341	5.6%(19)	NA	5 IVF/5 ICSI ^e	NA
67	Survey	209	2.9% (6°)	0.8%	1 IVF/5 ICSI	Suggestive
71	Survey	71	5.6% (4)	0.92%	IVF/ICSI	Suggestive

^a Data from the same BWS registry (NCI BWS registry and Washington University BWS registry).

^b Only BWS cohorts beginning in 2001 were used to calculate prevalence.

^c The frequency of children born after ART in BWS cohort was significantly higher than the expected ART cases based on the ART prevalence in the general population.

^d Fisher's exact test, two-sided, *P*=0.006.

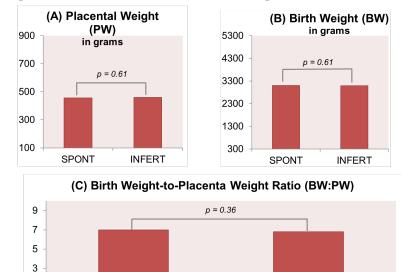
^e Data on type of ART obtained from 12 patients (two patients had only ovarian stimulation with intrauterine insemination).

Manipalviratn. Imprinting disorders and ART. Fertil Steril 2009.

Cohort studies of children

TABLE 4 Number of cases of BWS in a cohort study of children conceived naturally and after ART.										
Reference no.	No. of cases of BWS in children born after ART	Number of children born after ART	No. of cases BWS in children conceived naturally	Number of children conceived naturally						
68 69 70	0 0 1	6,052 16,280 1,524	0 NA NA	442,349 2,039,943 NA						
	NA = Not available. Manipalviratn. Imprinting disorders and ART. Fertil Steril 2009.									

Adverse pregnancy outcomes: methylation


Differences in DNA methylation and gene expression in term placenta from children conceived in vitro versus in vivo

Term placenta and cord blood and may not reflect the early changes that occur as a direct result of the IVF conditions in ART.

Term placenta may reflect changes in the intrauterine environment, which has been associated with an altered fetal epigenome leading to altered gene expression.

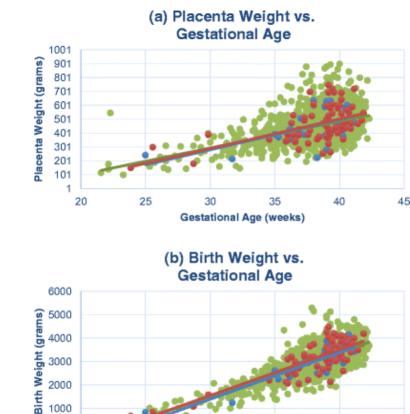
Placental Weight, Fetal Weight and Fetal Weight to Placenta Weight Ratio

INFERT

Figure 1: Placental and Birth Weight Parameters

Figure 2: Placental Characteristics

	SPONT N=1333	INFERT (NIFT+IVF) N=110	p- value
Preeclampsia findings, n (%)	111 (8.3%)	9 (8.2%)	0.96
Chorioamnionitis, n (%)	392 (29.4%)	35 (31.8%)	0.59
Accreta, n (%)	16 (1.2%)	4 (3.6%)	0.036
Placental Shape, n (%)			0.23
Discoid	737 (55.3%)	58 (52.7%)	
Ellipsoid	202 (15.2%)	15 (13.6%)	
Ovoid	200 (15%)	14 (12.7%)	
Circular/Round	63 (4.7%)	5 (4.5%)	
Other	50 (3.8%)	9 (8.2%)	



1

SPONT

Placental Weight, Fetal Size and Fetal Size to Placenta Weight Ratio

 Linear regression demonstrates that regardless of gestational age, the placenta weight, fetal weight and fetal size to placenta weight do not vary by mode of conception.

30

Linear (SPONT) ——Linear (NIFT)

Gestational Age (weeks)

35

40

Linear (IVF)

45

25

SPONT

1000

20

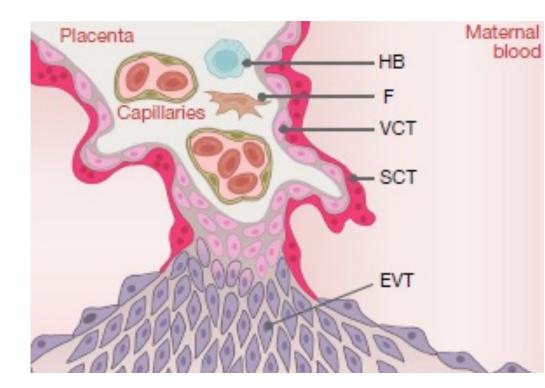
Abnormal placentation is associated with adverse pregnancy outcomes - preeclampsia, PIH, gestational diabetes, previa, abruption, placental retention

Pregnancies conceived with infertility and treatments are at risk of:

abnormal placentation

abnormal placental morphology and cord insertion

abnormal protein profiles


increased metabolism and clearance of steroids by the placenta

Small for gestational age babies

Gavriil P, et al 1993 Pediatr Pathol 13:453-462 Zhang Y, et al 2008 Proteomics 8:4344-4356 Collier AC, et al 2009 J Steroid Biochem Mol Biol 116:21-28 Delle Piane L,et al 2008 Reproductive Sciences 15:81A-81A

Placentation

The placenta is made up of important cell types

Villous cytotrophoblasts (VCT): undifferentiated precursor cells

Extravillous trophoblasts (EVT): Invade decidua and maternal blood vessels

Syncitiotrophoblasts (SCT): Facilitate nutrient exchange and produce hormones

Endothelial cells: Line fetal blood vessels

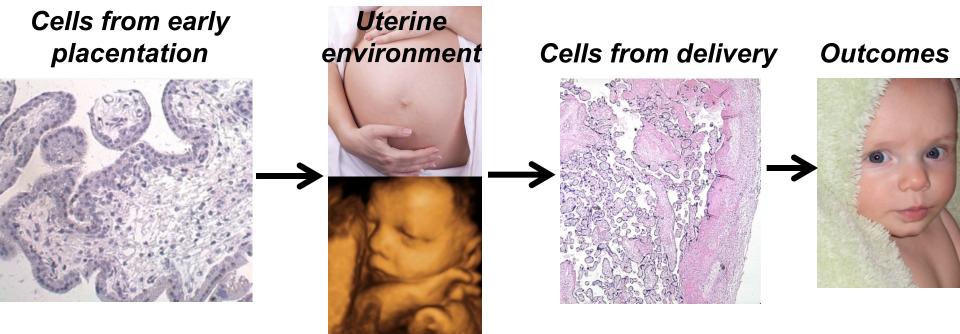
Immune cells: stromal fibroblasts (F), dendritic cells, macrophages or Hofbauer cells (HB)

Model of Placentation

•1st trimester placenta tissue

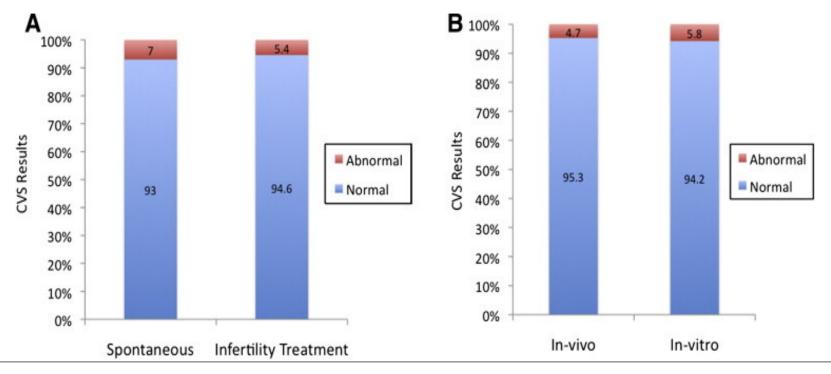
Chorionic villus sampling

Prenatal diagnostic test at 11-13 weeks


Ongoing pregnancies that deliver at term

Chorionic villi

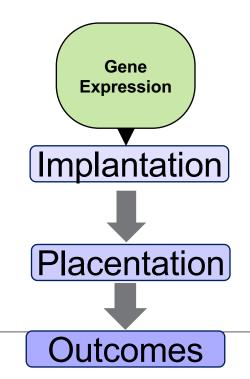
Are the outcomes associated with ART due to the in vitro fertilization process, the treatments or the inherent infertility we are trying to overcome?



Earliest time point in ongoing pregnancy

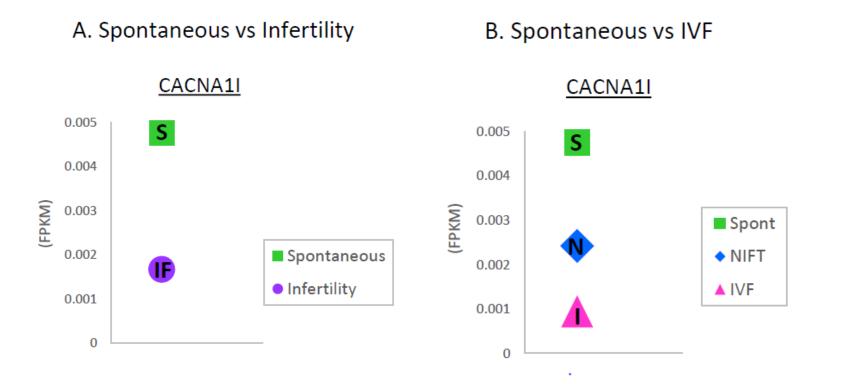
Cytogenetic Abnormalities assessed by CVS in Spontaneous vs. Infertile Patients

- 1,606 women conceived spontaneously
- 559 women conceived through infertility treatment
 - 233 conceived in vivo
 - 326 conceived in vitro


Conway Fertil Steril 2011 Feb;95(2):503-6

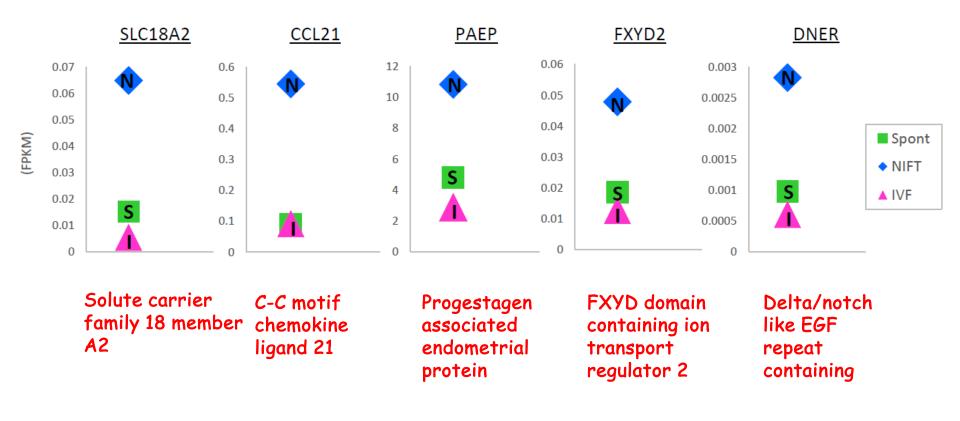
Spontaneous/ Medical Assisted/ART (SMAART) Cohort

- a cohort of pregnancies conceived either spontaneously or in couples with infertility conceived either through non-IVF fertility treatment (NIFT) or IVF, that are enrolled in the late first trimester of pregnancy at the time of Chorionic Villus Sampling (CVS) and followed until delivery
 - 208 spontaneous conceptions
 - 201 pregnancies conceived with a history of Infertility
 - 90 conceived with NIFT
 - 111 conceived with IVF

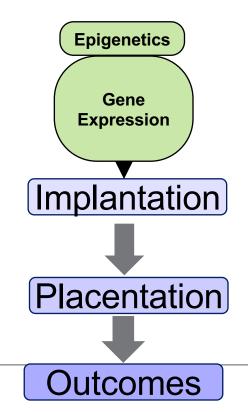


SMAART Cohort

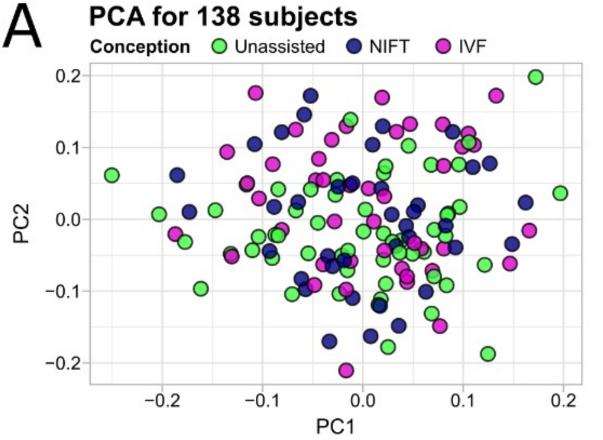
SMAART Transcriptome cohort


Calcium voltage-gated channel subunit alpha1

Calcium voltage-gated channel subunit alpha1

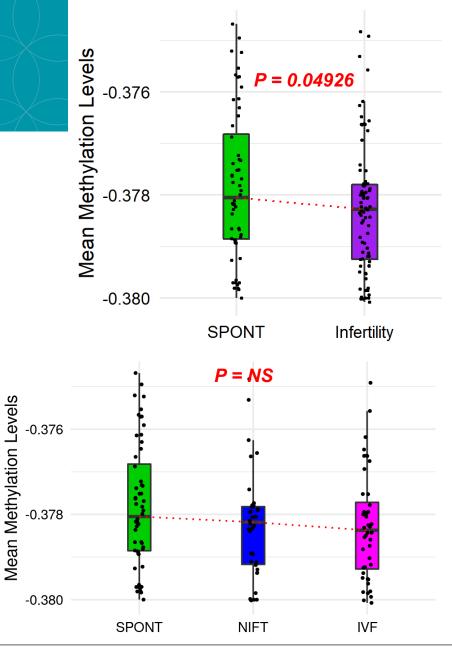

SMAART Transcriptome cohort

C. NIFT vs IVF


SMAART Cohort

Global methylation alterations due to infertility and treatments

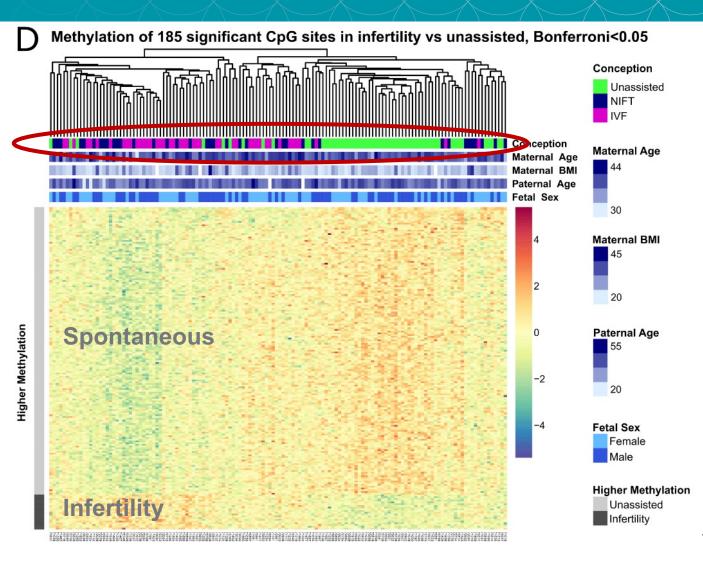
Principle Component analysis does not demonstrate clustering

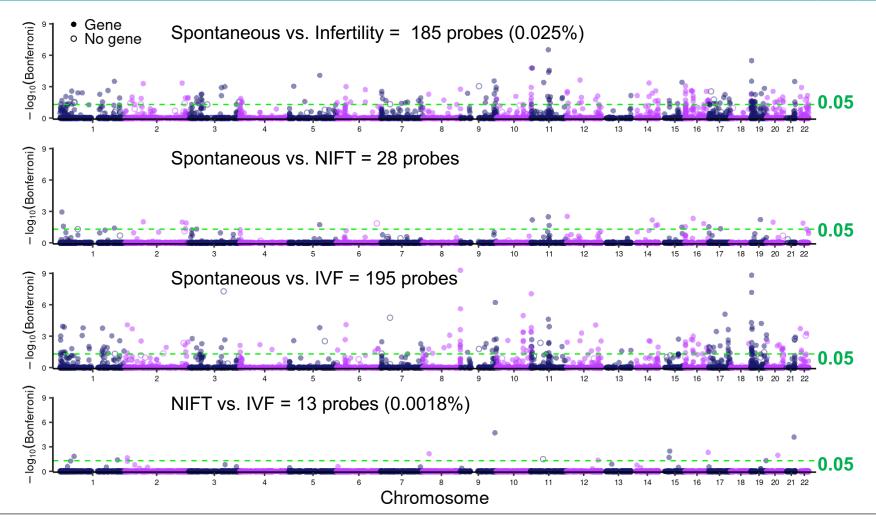


Gonzalez, et al. Fertil Steril 2023 Xu et al, Repro Sciences 2016

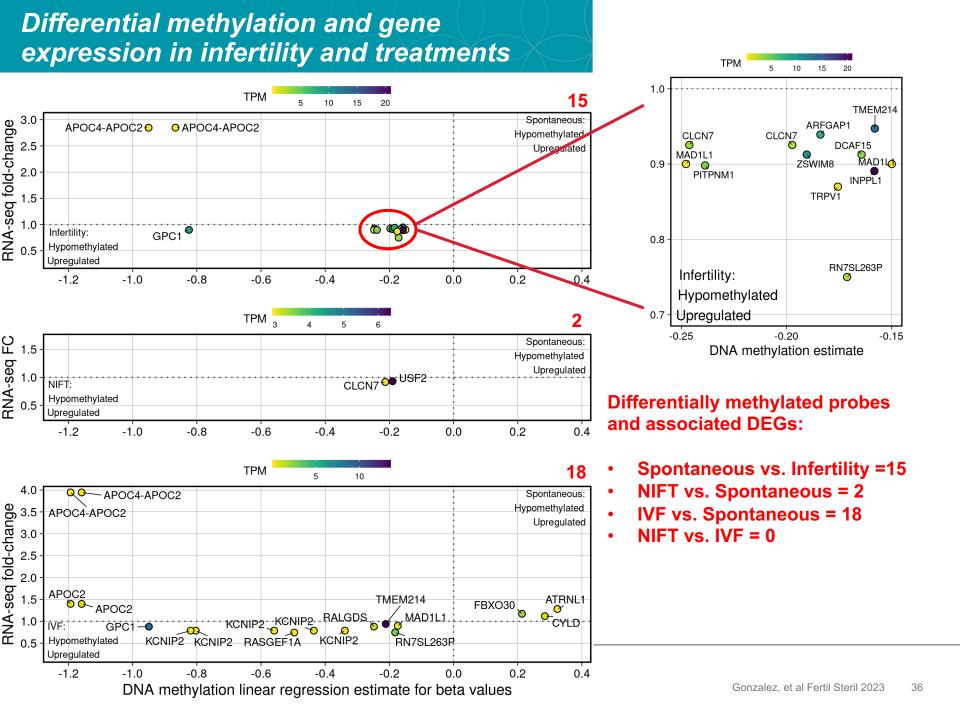
Global methylation alterations due to infertility and treatments

- Median β values were significantly lower in the infertility cohort compared to the spontaneous cohort.
- Median β values were lower in the NIFT and IVF cohort compared to spontaneous cohort, but overall there was no significant difference among the groups.
- Infertility may be associated with global hypomethylation and not the specific treatment.




33

Global Differential Methylation due to infertility and treatments


- Clustering is identified between the infertility and spontaneous cohort.
- Within the infertility cohort, there is no clustering of NIFT or IVF cohorts, suggesting diversity among the infertility group, independent of treatment utilized.

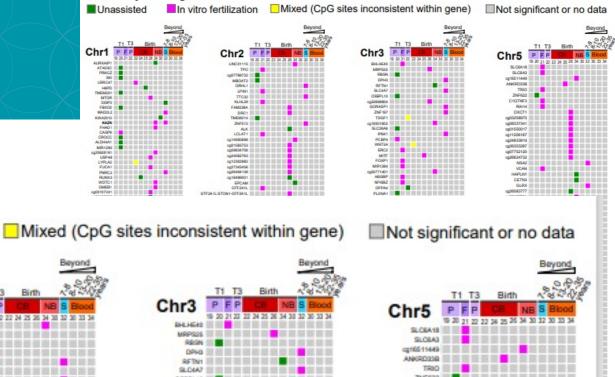
Chromosomal Distribution of Differentially Methylated Probes due to infertility and treatments

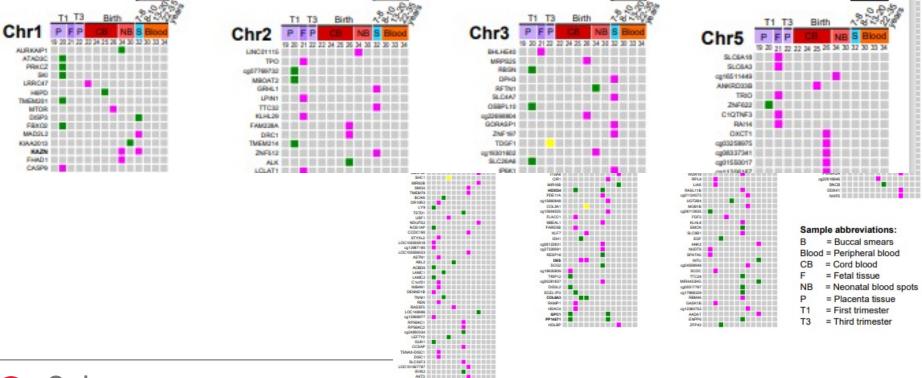
Methylation Changes Across the Lifespan A Systematic Review

	Ś		\$		G	~ ●			Ť
	Trophectoderm	Pregnancy		Newborn		Childhood		Adult	
		1 st Trimester Placenta	Fetal Tissue	Term Placenta	Cord Blood	Newborn Dried Blood Spot	Buccal Smears	Peripheral Blood	Peripheral Blood
Infertile vs Fertile	Denomme (2021)								
IVF (+/- ICSI) vs Unassisted		Xu (2017) Gonzalez (2022)	Liu (2021)	Katari (2009)	Katari (2009) Melamed (2015) Tobi (2020) Haberg (2022)	Novakovic (2019) ** Yeung (2021)	Ducreux (2021)	Yeung (2021)	Novakovic (2019)** Penova- Veselinovic (2021)
ICSI Only vs Unassisted					El Hajj (2017) Gentilini (2018)	Estill (2016) Yeung (2021)			
NIFT vs Unassisted		Xu (2017) Gonzalez (2022)				Estill (2016) Yeung (2021)		Yeung (2021)	
IVF vs NIFT		Xu (2017) Gonzalez (2022)		Choufani (2019) *		Estill (2016)			
Infertility (NIFT + IVF +/- unassisted with h/o infertility) vs Fertile		Gonzalez (2022)		Choufani (2019)	Caramaschi (2021)	Estill (2016) Yeung (2021)		Yeung (2021)	

*NIFT cohort contained those with history of infertility conceiving unassisted ** IVF cohort Also contained GIFT

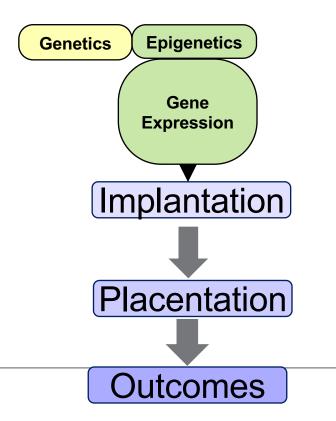
Interpreting Data in a Larger Context: Systematic Review


In vitro fertilization


DNA methylation higher in...

Beyond

Unassisted


Cedars

DNA methylation higher in...

SMAART Cohort

Single nucleotide variants (SNVs) that associate with infertility – Family associated GWAS

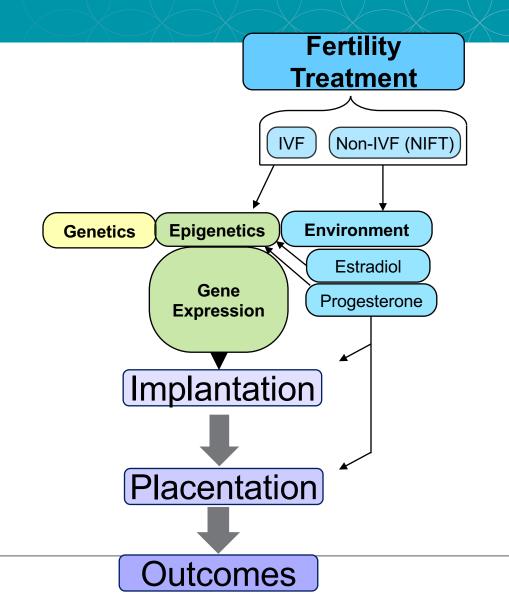
166.4

- Wookroftbeoghevæ, misk the Sehlosnæewedæssigrikkteehvæth paræltiertbriesgreine of 5x10⁻⁸
 SNP SPIRESSIGR: For the indext
 - Of the 637;072 SNVS that risk SNV rs1560594 passed quality control measures – 11 SNVs were demonstrate associations dentified with sub-genometor the noncoding trapscript wide significance (p SNVs AC009495,2 GALNT3 and representing 510cl TTC21B in whole blood and adipose.

10 100 AC009495 2 GALNT3 chr2 165843288_A_G_b38 chr2 165843288 A G b38 affect affect allele Adiposien Supcutar Nota jor Whole Blood 0.8 SNP Ν Chr Pos allele allele allele freq beta value rs966123 18 72,538,424 А G Α 0.1593 219 1.883939 0.359954 66F-07 Т С rs7227977 18 72.447.422 С 0.1429 218 1.7946 0.356161 4.69E-07 72.441.802 С rs9959617 18 Α Α 0.1416 219 1.768401 0.35615 6.86F-07 rs547335 18 72,452,702 С т С 0.1416 219 1.715122 0.345868 7.09E-07 rs9842612 3 191.465.461 А G A 0.1814 1.476744 0.305645 1.35E-06 219 rs1516493 3 191,465,981 G А G 0.183 218 1.353167 0.296467 5.01E-06 rs1560594 2 166,699,798 Α G А 0.2098 218 1.371854 0.289643 2.18E-06 rs10930182 2 166.688.188 т С Т 0.1947 219 1.280279 0.284719 6.90E-06 rs2060167 2 166,689,342 т С т 0.2009 218 1.270278 0.284705 8.13E-06 s10937641 G Α G 4 5,384,256 0.2212 219 1.329634 0.29133 5.02E-06 G rs12461639 19 48.172.671 G Α 0.2345 219 -1.21693 0.270402 6.78E-06 CSRNP3→ <− GALNT3 <- SCN1A <-SCN9A < TTC21B LOC101929680-LOC100506124 OC102724058-TTC21B-AS1→

Position on chr2 (Mb)

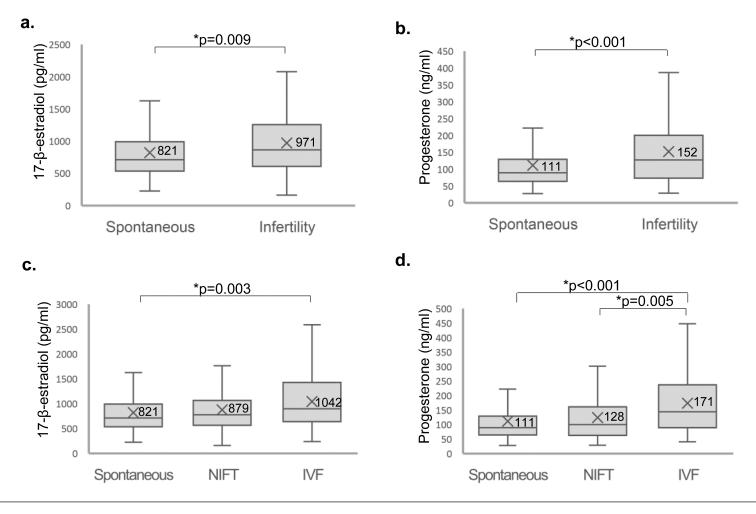
166.8


166.6

Unpublished Data

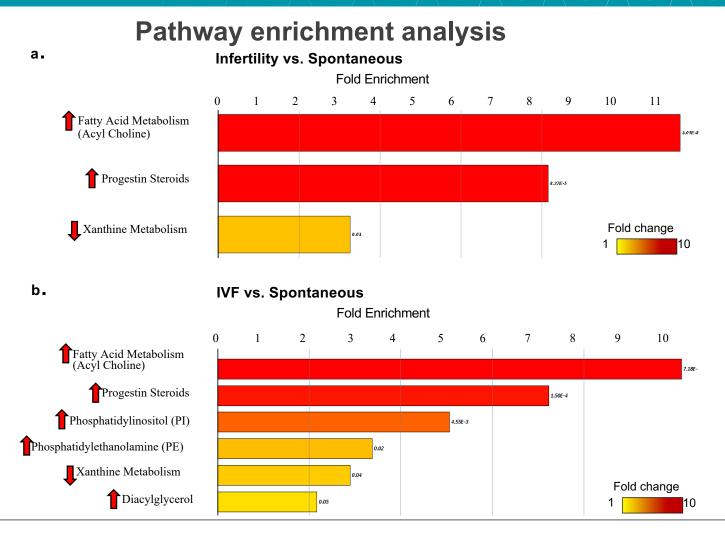
167

SMAART Cohort

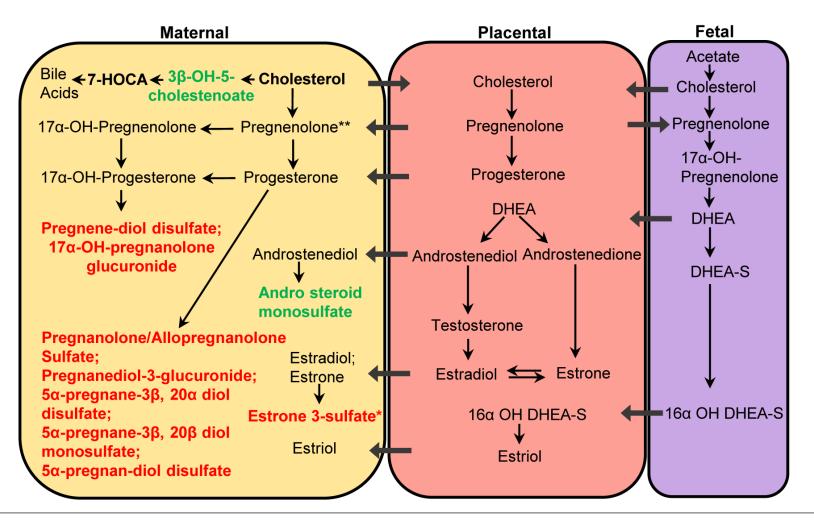


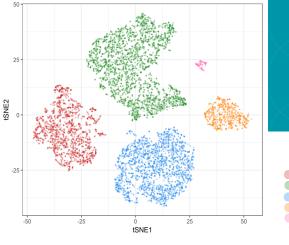
Supraphysiologic Hormones

- Supraphysiologic hormone levels have been implicated in increased rates of low birth weight and small for gestational age babies.
- Since pregnancies conceived through fertility treatments are exposed to elevated estradiol and progesterone levels, either endogenously through treatments or exogenously to supplement the pregnancy, we wanted to determine whether previous treatments impact the hormonal milieu of an ongoing pregnancy.


The Supraphysiologic Hormonal Milieu

Sun, et al. JCEM. 2018


Differences in metabolomic profiles in late first trimester



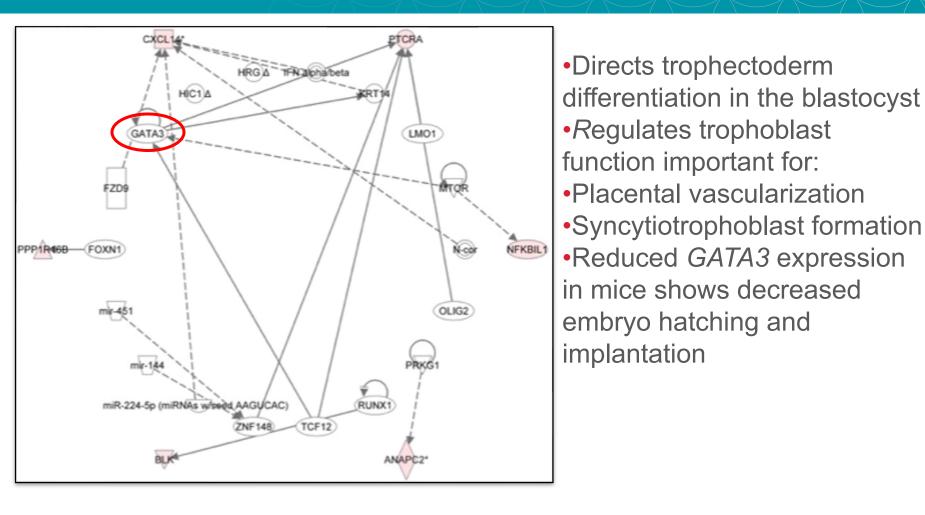
Sun, et al. JCEM. 2018

Model of steroid hormones and metabolites within the maternal-placental-fetal unit

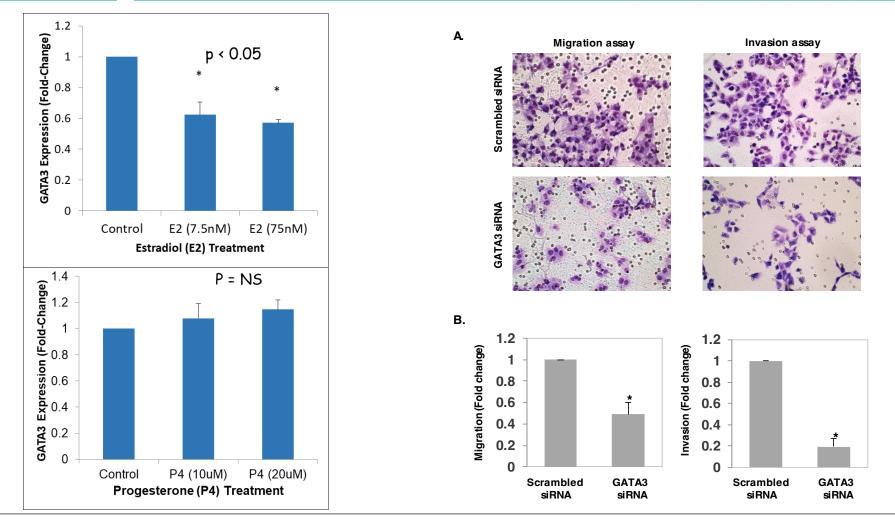
First Trimester Chorionic Villi- Single Cell Sequencing

P1 Trophoblast Cells

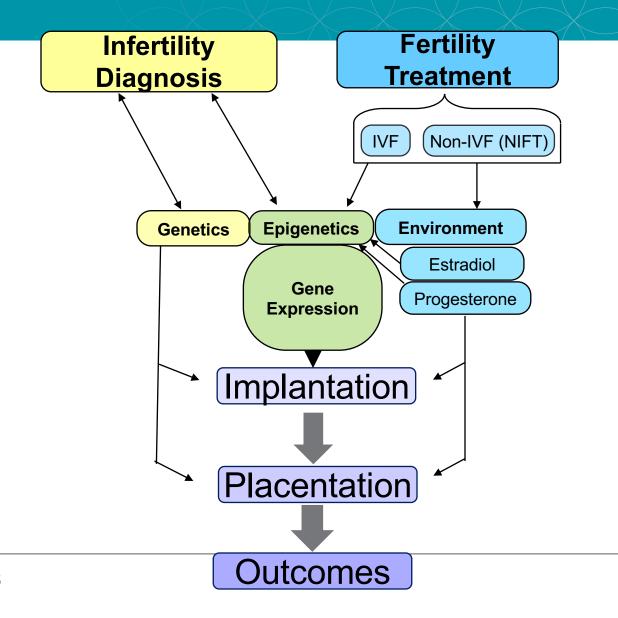
- P2 Stromal Cells P3 Macrophages
- P4 Dendritic Cells
- P5 Endothelial Cells


P1		1		
(Trophoblast)			Targets	
BMP4	Growth factor	3.9E-21	26	
beta-estradiol	Chemical – endogenous	9.34E-15	60	
	Ligand-dependent nuclear			
PGR	receptor	2.35E-13	22	
ERBB2	Kinase	3.81E-12	33	
	Ligand-dependent nuclear			
ESR1	receptor	5.54E-12	44	
TGFB1	Growth factor	9.98E-10	48	
HRAS	Enzyme	1.98E-09	26	
PTEN	Phosphatase	5.12E-09	22	
TP53	Transcription regulator	9.39E-09	43	
TNF	TNF Cytokine		45	
P2 (Stromal)	Molecule Type	p-value	Targets	
TGFB1	Growth factor	3.26E-29	98	
beta-estradiol	Chemical – endogenous	5.06E-27	99	
FGF2	Growth factor	8.5E-24	42	
CTNNB1	Transcription regulator	1.52E-23	58	
WNT3A	Cytokine	1.53E-21	34	
	Ligand-dependent nuclear			
AHR	receptor	5.98E-20	37	
TGFB2	Growth factor	9.85E-19	22	
TGFB3	Growth factor	2.83E-18	22	
TWIST1	Transcription regulator	2.97E-18	25	
HRAS	Enzyme	8.9E-18	45	

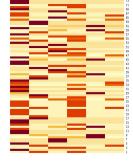
P3				
(macrophages)	Molecule Type	p-value	Targets	
CSF2	Cytokine	5.32E-20	35	
TNF	Cytokine	6.32E-20	66	
leukotriene D4	Chemical - endogenous	3.48E-19	16	
IL13	Cytokine	1.59E-15	28	
IFNG	Cytokine	6.54E-15	50	
beta-estradiol	Chemical – endogenous	2.19E-14	60	
IL1B	Cytokine	5.7E-14	39	
CSF1	Cytokine	3.34E-12	18	
IL4	Cytokine	3.63E-12	36	
IL2	Cytokine	8.48E-11	27	
P4 (Dendritic-				
like)	Molecule Type	p-value	Targets	
IFNG	Cytokine	4.82E-27	48	
TGFB1	Growth factor	4.45E-20	46	
TNF	Cytokine	1.91E-18	44	
IL13	Cytokine	1.61E-17	23	
IL27	Cytokine	6.75E-17	16	
IL4	Cytokine	4.2E-16	30	
CIITA	Transcription regulator	5.3E-15	10	
IL1B	Cytokine	5.48E-15	29	
CSF3	Cytokine	3.81E-14	15	
beta-estradiol	Chemical - endogenous	5.37E-14	40	
P5 (Endothelial)	Molecule Type	p-value	Targets	
KLF2	Transcription regulator	4.38E-10	10	
TNF	Cytokine	8.04E-09	25	
TGFB1	Growth factor	8.61E-09	25	
CAV1	Transmembrane receptor	7.25E-08	8	
ENG			5	
	Ligand-dependent nuclear			
ESR1	receptor	2.27E-06	18	
SRC	Kinase	5.46E-06	6	
TCF7L2	Transcription regulator	5.68E-06	9	
ERBB2	Kinase	6.54E-06	13	
miR-199a-5p	Mature microRNA	7.77E-06	5	

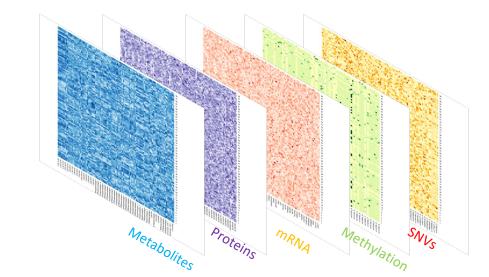

Sun, Gonzalez, Deng, Pisarska et al. https://www.biorxiv.org/content/10.1101/641118v1

Upstream Analysis of Differentially Methylated Genes



Estradiol downregulates GATA3 and downregulation of GATA3 inhibits migration and invasion


SMAART Cohort



Impact of infertility on placentation through a multiomics analysis

Regularized Canonical Correlation Analysis - Provides correlation across a large data landscape using small sample sizes

Phenotypes

Data	Features		
Phenotypes	7 traits		
Genomics - OmniExpressExome Chip	688,534 SNVs		
Methylomics - methylation EPIC Array (Illumina)	865,855 sites		
Transcriptomics - Total RNA sequencing	61,801 genes		
Metabolomics of mother's serum (Metabolon)	704 metabolites		

Genetic/epigenetic impact of infertility on placentation through a multi-omics analysis

Correlation Component	Spont	Infertility	Sex	Mat Age	Race	CVS age
1	0.048				0.99	0.05
2				-0.11		
3	0.99		-0.11			
4			0.11	0.99		
5	0.11		0.99			
6	-0.034	0.002	-0.99			0.06

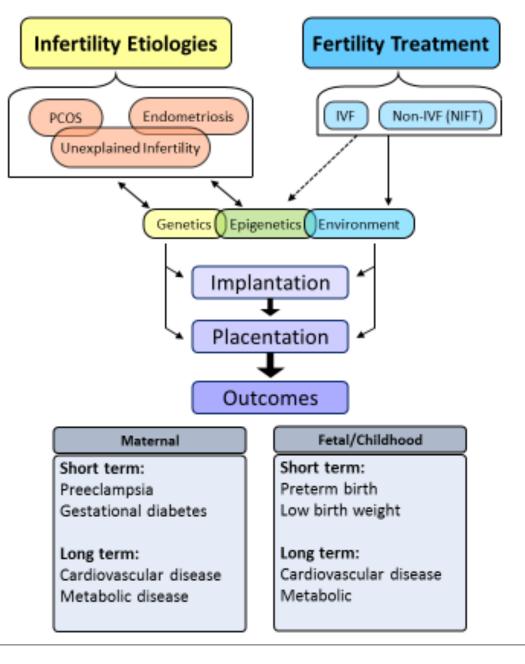
- Component 3 contains the association of infertility with the rest of the data landscape
- Effect of sex, maternal age, race, and CVS age are separated from the effect of infertility

• 296 Features Identified in Component 3

- Genomics: 40 Features (SNVs)
- Methylomics: 40 Features (methylated regions)
- Metabolomics: 8 Features (metabolites)
- Transcriptomics: 209 Features (transcripts)
- Central Theme Mitochondrial Regulation

- Mitochondrial Regulatory Genes
 - ARAF
 - MYOF
 - PRKCZ
 - DNAJC1
 - MTFR1
- Mitochondrial small RNAs
- Nuclear encoded
- Regulators of mitochondrial transcription
 - MTATP6P9,23,31
 - MTCO2P7; MTCYBP42
 - MTND1P2,20,28,31
 - MTND2P15,20
 - *MTND4P1,4,8*

- Infertility and/or the treatments are associated with some increased risks of adverse outcomes to mother and child including:
 - Mother -diabetes, pregnancy induced hypertension, placenta previa and abruption as well as SMM
 - Child- prematurity, growth restriction, and birth defects
- RISKS ARE SMALL
- Risks are independent of treatment utilized
- Outcomes are related to placentation



Conclusions

- Genetics of infertility appears to be a major contributor that may alter methylation and gene expression
- Supraphysiologic hormonal states may be a contributor
 - Altered methylation
 - Reprogramming the placenta to maintain a high hormonal state
 - Impacting trophoblast invasion and migration
- Multi-omics suggest genetics/epigenetics are impacting mitochondrial genes in the first trimester placenta

Future Directions-Infertility Etiology

Acknowledgements

- Pisarska Lab
 - Tania Gonzalez, PhD
 - Amy Flowers, PhD
 - Bora Lee, PhD
 - Tian Sun, PhD
 - Nick Joshi, MD
 - Lauren Sundheimer, MD
 - Laura Eisman, MD
 - Sahar Wertheimer, MD
- Prenatal Biorepository
 - Allynson Novoa
 - Akhila Swarma
- Faculty
 - Erica Wang, MD MAS
 - Jessica Chan, MD MSCE •
- REI Fellows
 - Bryn Willson, MD
 - Katherine VanHise, MD
 - Aly Kosturakis, MD
- CFRM Staff

- Maternal Fetal Medicine Division
 John Williams III MD
- Division of Functional Genomics
- Kate Lawrenson, PhD
- Pediatrics
 - Charles Simmons, MD
- University of Virginia
 - Charles Farber, PhD
 - Steve Rich PhD
 - Stephen Turner PhD
 - Alex Koeppel PhD
- Division of Endocrinology
 - Mark Goodarzi, MD PhD
- Lundquist Institute
 - Jerome Rotter, MD
 - Ida Chen, PhD
 - Kent Taylor, PhD
 - KUMC
 - Michael Soares, PhD
 - Kaela Varberg, PhD
- SCE · UCLA
 - Hsian-Rong Tseng, PhD Funding: R01HD074368, R01HD091773 (NICHD)
 - U01EB02642 (NIBIB/NICHD)

Our patients for participating in our studies to improve outcomes!

