Diagnosing Infertility Helping Your Patients Through The Process

Margareta D. Pisarska, MD

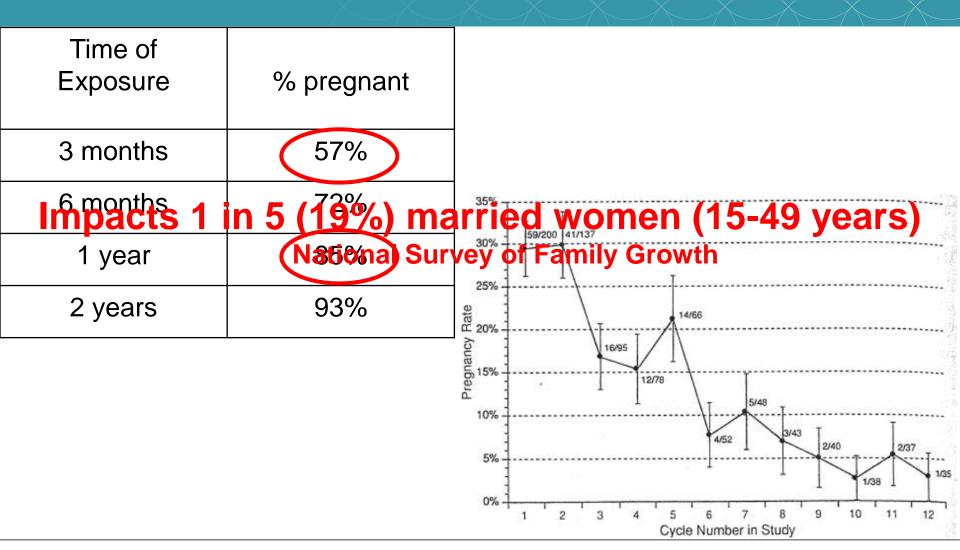
Director, Division of Reproductive Endocrinology and Infertility

Director, Center for Reproductive Medicine

Professor, Cedars-Sinai Medical Center

Disclosures

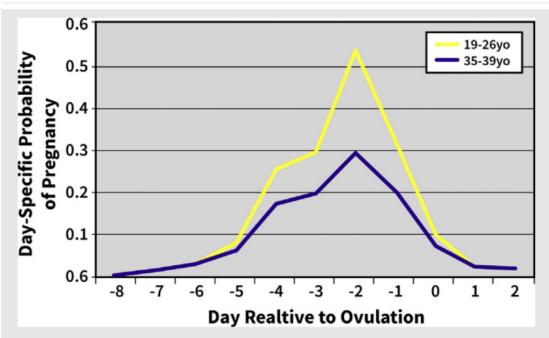
- Ferring
- Natera



Objectives

- Define Infertility
- Understand the options to improve natural fertility
- Understand the evaluation for infertility
- Some new developments in the fertility evaluation

Time Required for Conception

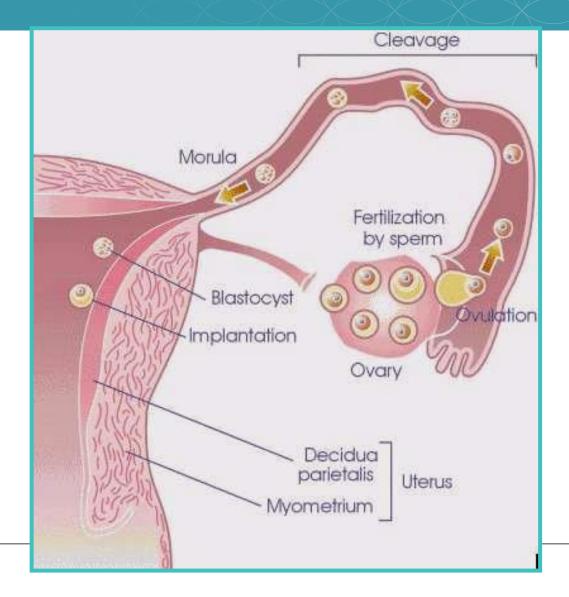


New Definition of Infertility

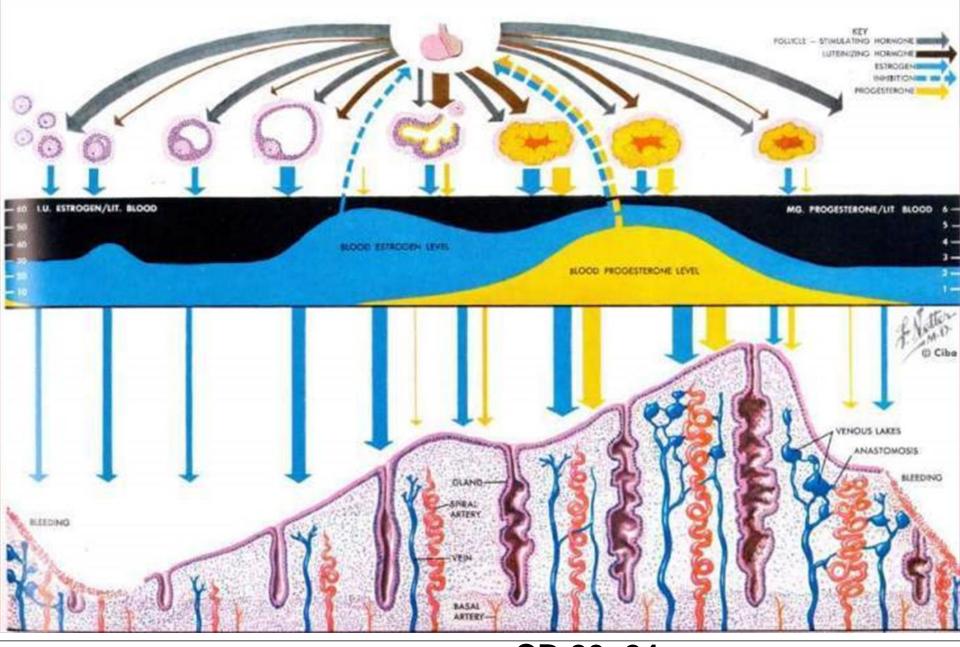
- "Infertility" is a disease, condition, or status characterized by any of the following:
 - The inability to achieve a successful pregnancy based on a patient's medical, sexual, and reproductive history, age, physical findings, diagnostic testing, or any combination of those factors.
 - The need for medical intervention, including, but not limited to, the
 use of donor gametes or donor embryos in order to achieve a
 successful pregnancy either as an individual or with a partner.
 - In patients having regular, unprotected intercourse and without any known etiology for either partner suggestive of impaired reproductive ability, evaluation should be initiated at 12 months when the female partner is under 35 years of age and at 6 months when the female partner is 35 years of age or older.

The Fertile Window

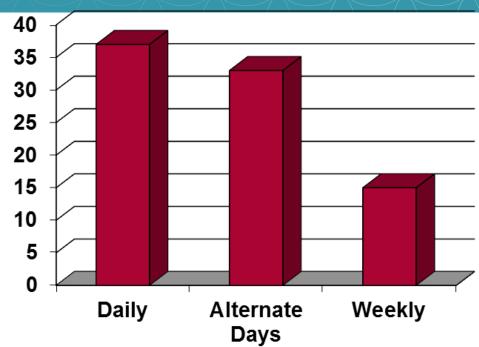
Probability of pregnancy resulting from recurrent intercourse by woman's age and cycle day. Data from Stanford and Dunson (17).


Practice Committee of the American Society for Reproductive Medicine and the Society for Reproductive Endocrinology and Infertility. Fertil Steril 2021.

Practice Committee of the American Society for Reproductive Medicine and the Society for Reproductive Endocrinology and Infertility. Fertil Steril 2021.


- The fertile window spans the 6 day interval ending on the day of ovulation
- Peak fecundability occurs within 2 days before ovulation
- The likelihood of success decreases with increasing age

Requirements for Conception



CD 20~24 (LH +6~+10)

Natural Fertility Frequency of Intercourse

Fecundability

- Reproductive efficiency increases with the frequency of intercourse and is highest when intercourse occurs every 1 to 2 days
- The stress associated with infertility can reduce sexual esteem, satisfaction, and the frequency of intercourse

Lifestyle Factors That May Impact Fertility - Females

- Weight Fertility rates decrease in very thin or obese women
- Diet Robust Data on dietary variations is lacking
 - Healthy Food Consumption may improve ovulatory dysfunction infertility
- •Smoking significantly more likely to be infertile (OR, 1.60; 95% CI, 1.34–1.91)
- Caffeine Consumption
 - High (500 mg; >5 cups of coffee per day) decreased fertility (OR, 1.45; 95% CI, 1.03–2.04)
 - Medium (over 200 to 300 mg per day 2–3 cups per day) increase the risk of miscarriage
 - Moderate(1– 2 cups per day) no apparent adverse effects on fertility or pregnancy outcomes

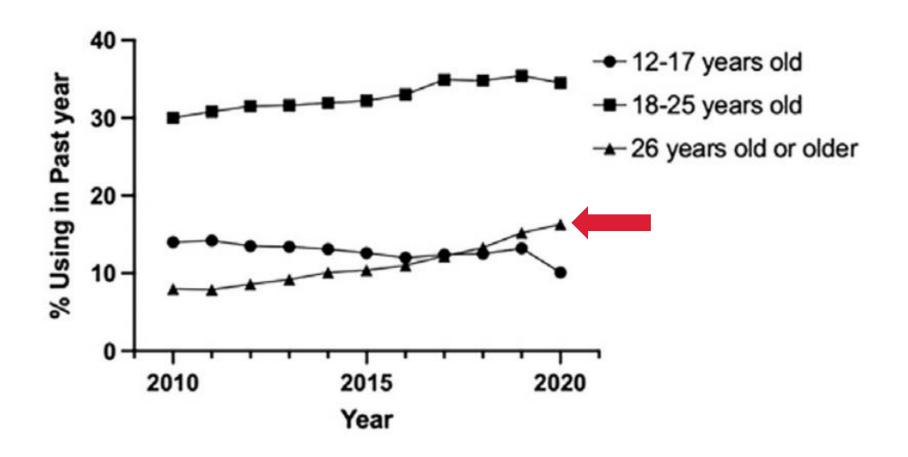
Social Media New Source of Information on Diets and Supplements for PCOS?

	Diets	Supplements
	N = 50	N = 50
Views by Uploader Credentials, (%)		
Blogger	33.5	1.8
Fitness instructor/Health coach	0.4	4.2
Healthcare professional*	33.1	1.3
Nutrition professional**	23.7	34.2
Patient	9.3	58.5
Likes by Uploader Credentials, (%)	4	
Blogger	44.1	2.3
Fitness instructor/Health coach	0.7	3.9
Healthcare professional*	24.2	1.7
Nutrition professional**	15.6	51.9
Patient	15.4	40.2
Quality and Reliability Scores		· ·
DISCERN score [†]	$3.0 \pm 0.86 (0.57)$	$2.4 \pm 0.96 (0.42)$
GQS score [†]	$3.0 \pm 0.9 (0.52)$	$3.0 \pm 0.9 (0.60)$
JAMA score [†]	$2.5 \pm 0.8 (0.44)$	$2.8 \pm 0.6 (0.56)$

Poor Scores

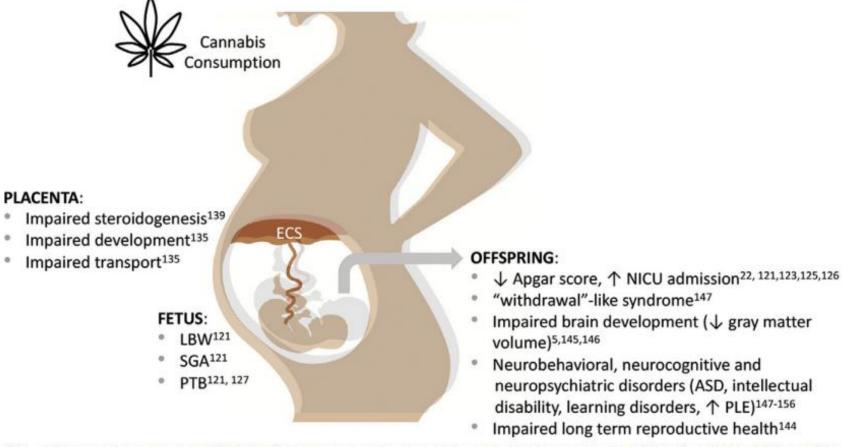
 $^{^{\}dagger}$ Reported values include mean \pm standard deviation (Cohen Kappa statistic)

^{*}Healthcare professionals include physicians, nurses, advanced practitioners, and chiropractors


^{**}Nutritional professionals include nutritionists and registered dieticians

Lifestyle Factors That May Impact Fertility - Males

- Smoking
 - Decreased sperm density, motility and abnormalities in sperm morphology
 - Data do not demonstrate conclusively that smoking decreases male fertility
- Alcohol Chronic Consumption
 - Lower sperm counts, motility, morphology, seminal fluid volume
 - Lower testosterone
 - Increased risk of sexual dysfunction
 - Increased risk of ejaculatory dysfunction
 - Premature ejaculation



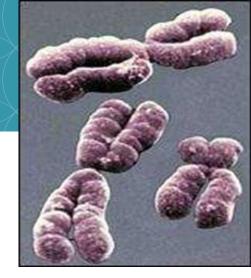
Cannabis Use

Cannabis Use

ASD, autism spectrum disorder; IUGR, intrauterine growth restriction; PLE, psychotic-like experience; PTB, preterm birth; SGA, small for gestational age.

Cannabis Use - Female Reproductive Function

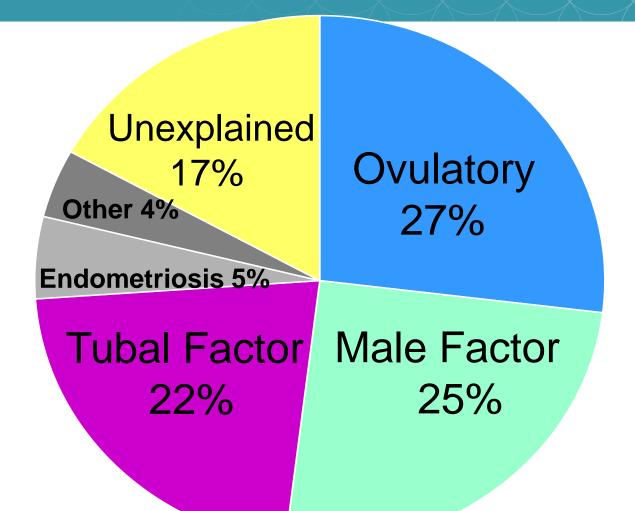
- Prevalence of infertility increased in users (RR, 1.7; CI 95%, 1.0–3.0)
- No association with time to pregnancy
- Alters reproductive hormones (FSH and LH)
- Ovulation
 - Delays ovulation
 - More anovulatory cycles than non-users (43% vs 15%)
 - Twice as likely to experience infertility secondary to ovulatory dysfunction
- IVF
 - 25% fewer oocytes retrieved
 - 28% fewer oocytes fertilized
- Pregnancy loss more than double
- Animal Studies alters reproductive hormones, menstrual cycle length, ovulatory dysfunction


Cannabis Use - Male Reproductive Function

- Alters reproductive hormones (FSH and LH)
- 29% lower sperm counts
- Mixed reports on erectile dysfunction, orgasmic dysfunction, premature or delayed ejaculation
- Animal studies THC can adversely affect spermatogenesis via inhibition of Leydig cell function, reduction in gonadotropins, testicular atrophy, and abnormal sperm morphology
- Alters methylation in sperm affected genes identified are involved in early development, including neurodevelopment and cancers
- Significantly associated with sudden infant death syndrome, after adjusting for tobacco and alcohol co-use
- National Survey of Family Growth and North American Preconception Cohort Study no association to time to pregnancy

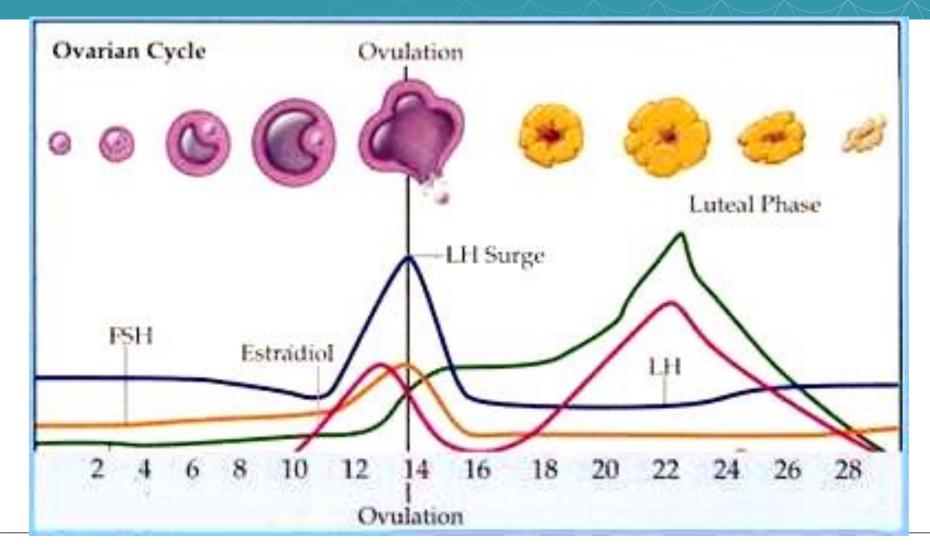
Preconception Counseling

- Family Planning and Pregnancy Spacing
- Genetic Risk Factors
- Optimize Medical Conditions and review current medications
 - diabetes, hypertension, psychiatric illness, and thyroid disease
- Vaccinations
 - COVID-19
 - Influenza
 - Rubella
 - Varicella
 - Measles
- Prenatal Vitamins/ Folic Acid



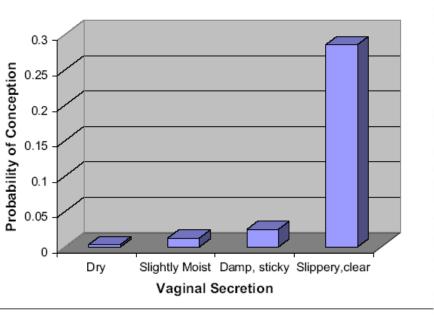
Preconception Genetic Screening

- All Ethnic Backgrounds
 - Cystic Fibrosis
 - Spinal Muscular Atrophy
- African-American/Mediterranean/South East Asian
 - Hemoglobin electrophoresis (sickle cell or thalassemia)
- French Canadian/Creole Tay Sachs disease
- Ashkenazi Jewish
 - Cystic Fibrosis, Tay Sachs disease, Canavan disease, Familial Dysautonomia, Bloom Syndrome, Fanconi anemia group C, Gaucher disease, Glycogen storage disease type 1a, mucolipidosis type IV, Niemann-Pick disease type A, Dlhydrolipoamide Dehydrogenase Deficiency, Familial Hyerinsulinism, Glycogen Storage Disease Type 1a, Maple Syrup Urine Disease, Nemaline Myopathy, Usher Syndrome Type IF, Usher Syndrome Type III
- Persian Jewish
 - Pseudocholinesterase deficiency, Congenital hypoaldosteronism, Polyglandular deficiency, Hereditary inclusion body myopathy
- Family History of Developmental Delay/ Ataxia/ Fragile X Syndrome/POF/Elevated FSH
 - Fragile X premutation
- Universal Screening

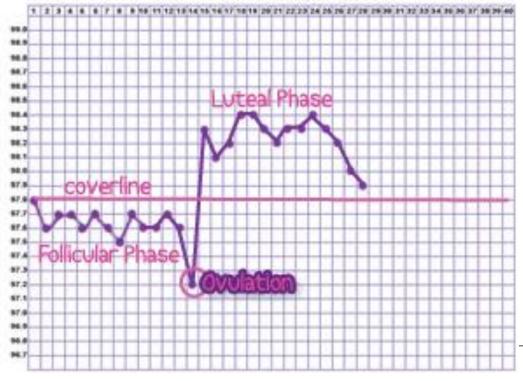


Diagnosis in Infertile Couples

Ovulation


Natural Fertility: Menstrual History

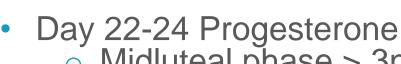
- Nonhirsute women -
 - Prevalence of ovulatory cycles with normal menstrual history is 99.5%
- Eumenorrheic women with hirsutism
 - Prevalence of regular ovulation decreases to 60%


Natural Fertility: Monitoring Ovulation

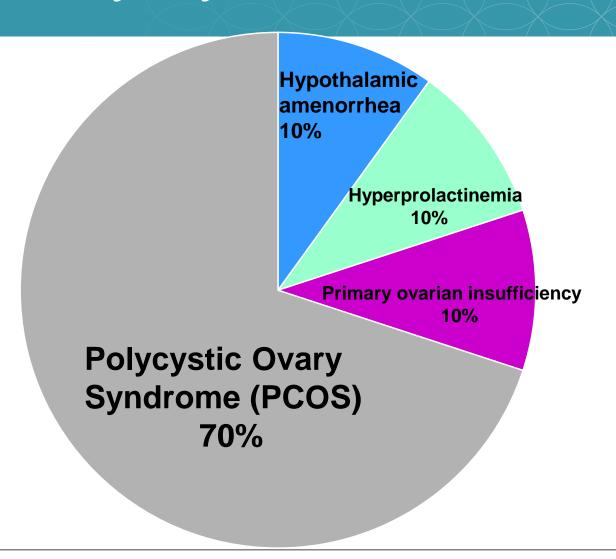
- Cervical mucus
 - Pregnancy rates at peak mucous (38%) vs. (15% to 20%)
 - More accurate than a menstrual calendar

BBT

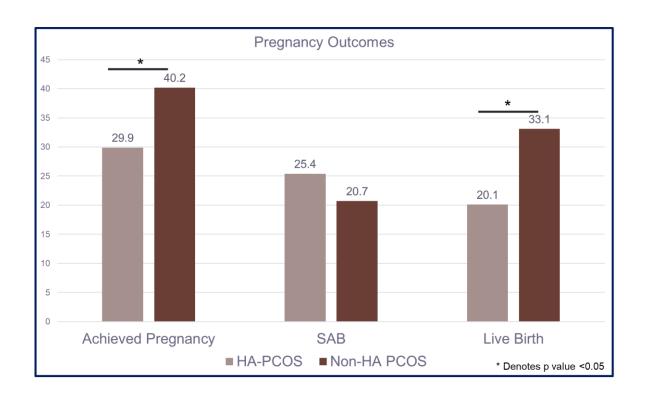
- Temperature taken upon awakening
- A biphasic pattern signifies ovulation
- Predicts the LH surge only within 2-3 days



Natural Fertility: Monitoring **Ovulation**


- Ovulation Detection Devices
 - may decrease the time to conception
 - ovulation may occur anytime within the 2 days thereafter
 - false-positive test results occur in approximately 7% of cycles
- App based technologies are not predictive of ovulation and may not add to traditional methods of ovulation detection
- - Midluteal phase > 3ng/ml

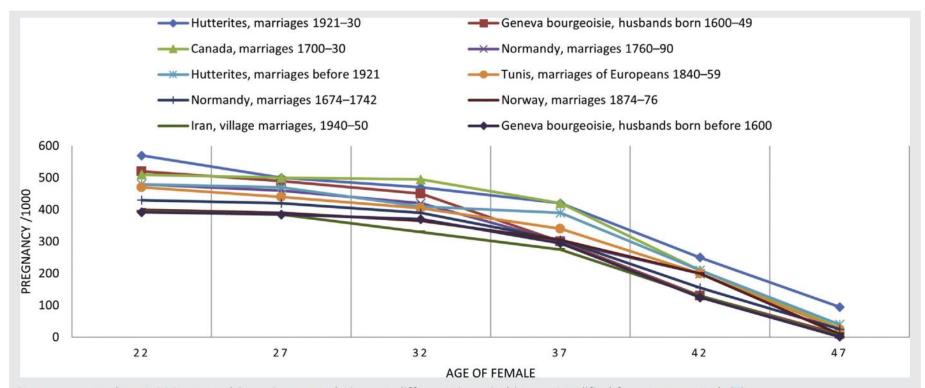
Ovulatory Dysfunction

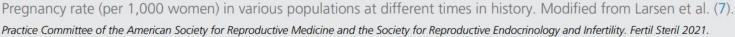

COMPARING THE PHENOTYPES OF PCOS BY NIH 1990, ROTTERDAM 2003, AND AES 2006

		Phenotypes			
Characteristics	A	В	С	D	
Hirsutism/HA	√	√	1		
Ovulatory dysfunction	√	√		√	
Polycystic ovaries	√		1	√	
NIH1990	√	√			
Rotterdam 2003	√	√	1	√	
AES 2006	√	√	1		

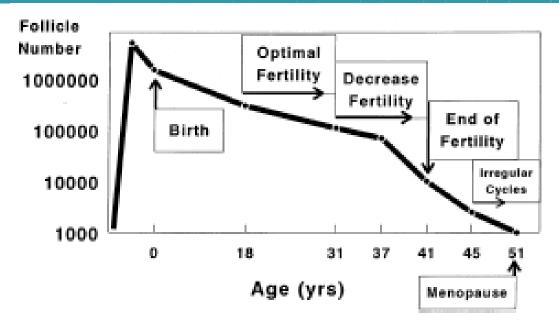
International Evidence Based Guideline for PCOS 2018

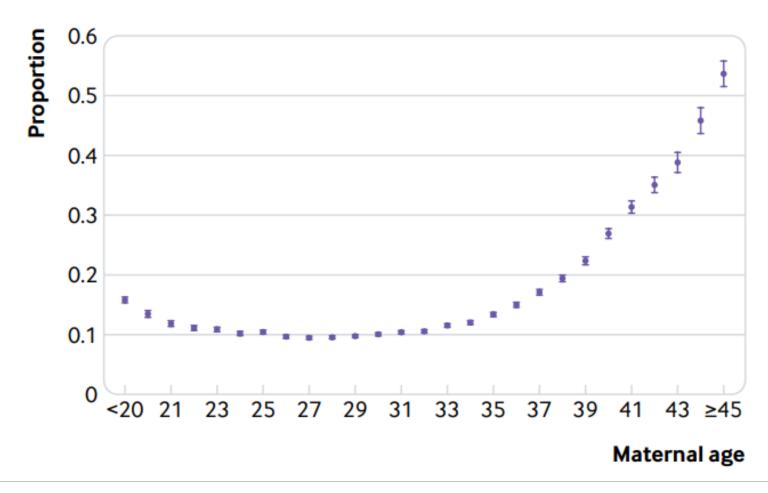
PCOS Phenotype Impacts Outcomes




HAR PCO SCO Sugrbap a do wewed do dot bit a biriter (O R post har by CO R 00.44-0.92)

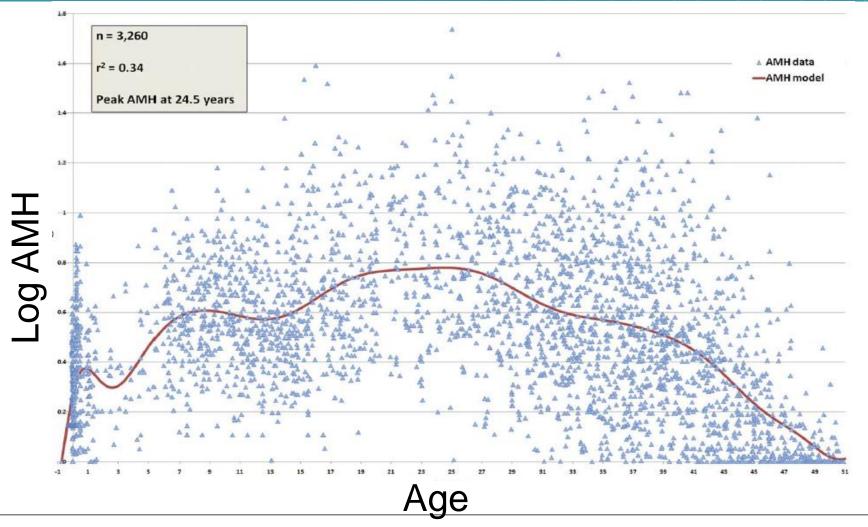
HAR FOR THE COUNTY OF THE C


Age and Fertility

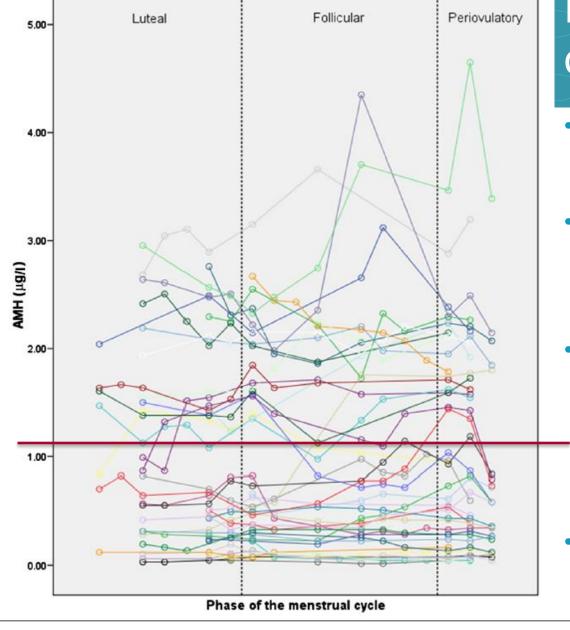

The Declining Follicle Pool

- The human ovary has a finite number of oocytes.
- •The pool of primordial follicles is formed during fetal life.
- A small number of this resting pool of primordial follicles is activated into growth daily.
- •The depletion of oocytes leads to menopause.

Age Related Decline of Oocyte Quality – Miscarriage Rates



Evaluation of Ovarian Age


- Basal FSH and Estradiol levels
- Antral Follicle Count/ Ovarian Volume
- Antimullerian hormone (Mullerian Inhibiting Substance)

AMH values from conception to menopause

Is AMH cycle-dependent?

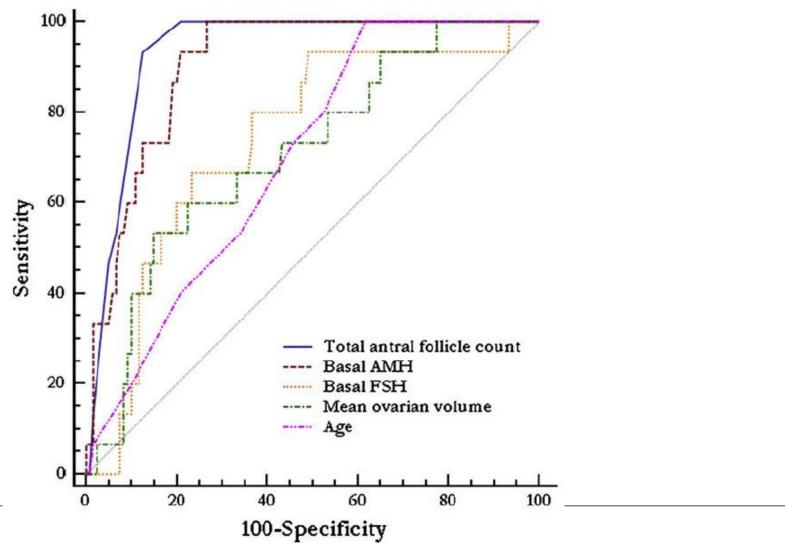
- 44 healthy women with regular cycles
- Serum AMH measured CD2-4 until 4 days post LH surge
- Individual patient plots show:
 - Low AMH stays stable
 - High AMH shows fluctuation
- If AMH <1.0 ng/dL, there is little fluctuation across the menstrual cycle

Antral Follicle Count

Antral follicle count cutoff levels (total count)	Subjects this applied to (n)	Sensitivity	Specificity	PPV	NPV	+LR	Post-test probability
≤7	4	0.13	0.98	0.45	0.90	9.00	52.9%
≤8	13	0.47	0.95	0.54	0.93	9.33	53.8%
≤9	15	0.53	0.93	0.49	0.94	8.00	50.0%
<<10 ^a	29	0.93	0.88	0.49	0.99	7.47	48.3%
≤11	40	1.00	0.79	0.37	1.00	4.80	37.5%

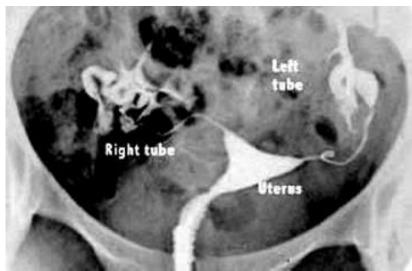
Note: The shift from the pretest probability (11.1%) to the post-test probability of poor response according to the antral follicle count is shown.

PPV = positive predictive value; NPV = negative predictive value; +LR = positive likelihood ratio.

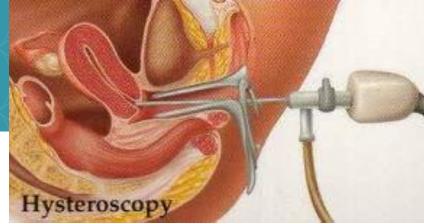

Jayaprakasan. AMH and 3D US markers of ovarian reserve. Fertil Steril 2008.

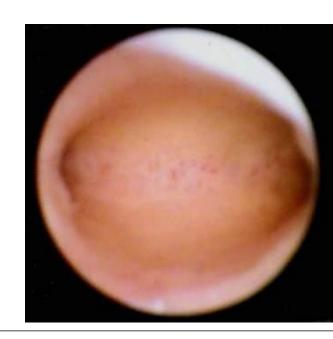
Optimal value to predict good ovarian response is 10

^a Optimum cutoff level.


Basal Markers of Ovarian Reserve

Hysterosalpingogram (HSG) and Sonohysterography


- Hysterosalpingogram (HSG)
- Tubal Patency
- Uterine Cavity
 - low sensitivity (50%) and positive predictive value (PPV) (30%) for intrauterine pathology.
- Sonohysterography (SHG)
 - defines the size and shape of the uterine cavity
 - high (>90%) PPV and negative predictive value for the detection of intrauterine pathologies (endometrial polyps, submucous myomas, synechiae)
 - hysterosalpingo-contrast sonography 76%– 96% sensitivity for tubal patency



Hysteroscopy

- Definitive method for the diagnosis and treatment of intrauterine pathologies
- Sensitivity of 88% and specificity of 85% to predict tubal patency through direct visualization of fluid or air bubble flow into the tubal ostia

Endometrial Biopsy

Journal of Assisted Reproduction and Genetics (2021) 38:645–650 https://doi.org/10.1007/s10815-020-02041-9

ASSISTED REPRODUCTION TECHNOLOGIES

Clinical utility of the endometrial receptivity analysis in women with prior failed transfers

Laura E. Eisman¹ • Margareta D. Pisarska¹ • Sahar Wertheimer¹ • Jessica L. Chan¹ • Alin Lina Akopians² • Mark W. Surrey² • Hal C. Danzer² • Shahin Ghadir² • Wendy Y. Chang² • Carolyn J. Alexander² • Erica T. Wang¹

[&]quot;Mean, standard deviation

^b Median (interquartile range)

 $^{^{}c} \ge 1$ prior failed ET compared to controls

^d≥3 prior failed ET compared to controls

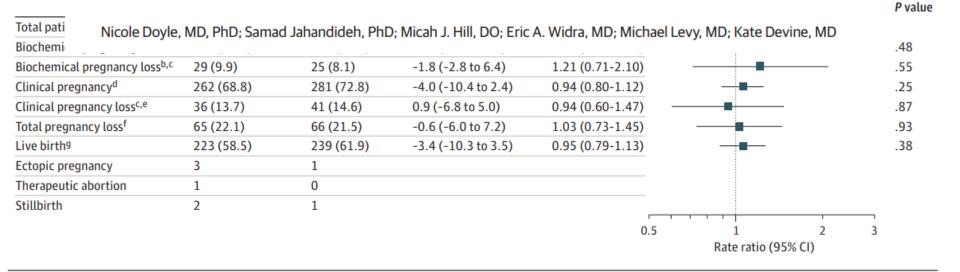
Endometrial Biopsy

 Table 2
 Pregnancy outcomes in the subsequent FET cycle after ERA test: cases vs. controls

	≥ 1 prior failed ET $N = 131$	\geq 3 prior failed ETs $N = 20$	Controls $N = 91$	P value ^a	P value ^b
Conception $(n/N (\%))$	92/131 (70)	12/20 (60)	70/90 (78)	0.213	0.099
Clinical pregnancy, $(n/N (\%))$	78/130 (60)	10/20 (50)	60/90 (67)	0.315	0.161
Ongoing pregnancy/ live birth $(n/N (\%))$	57/121 (47)	5/18 (28)	43/80 (54)	0.357	0.046

^a≥1 prior failed ET compared to controls

^b≥ 3 prior failed ETs compared to controls


Endometrial Biopsy

JAMA | Original Investigation

Figure 2.

Effect of Timing by Endometrial Receptivity Testing vs Standard Timing of Frozen Embryo Transfer on Live Birth in Patients Undergoing In Vitro Fertilization

A Randomized Clinical Trial

Laparoscopy

Laparoscopy is indicated when there
is evidence or strong suspicion of
endometriosis, pelvic/adnexal adhesions, or
significant tubal disease.

Laparoscopy is no longer part of the initial

work up for infertility.

Endometriosis and Infertility

Fecundity:

Control population:

0.15 - 0.20

Endometriosis population:

0.02 - 0.10

6 – 8x more likely to have Endometriosis

nature genetics

Article

https://doi.org/10.1038/s41588-022-01254-1

Single-cell transcriptomic analysis of endometriosis

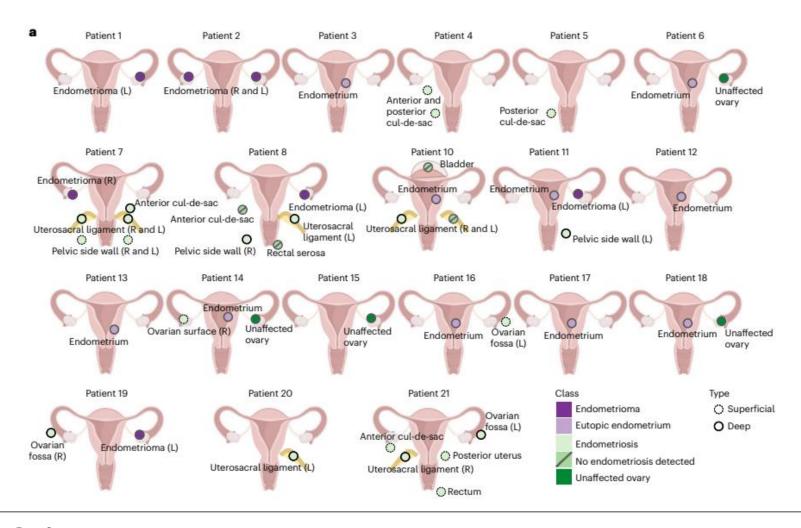
Received: 23 June 2021

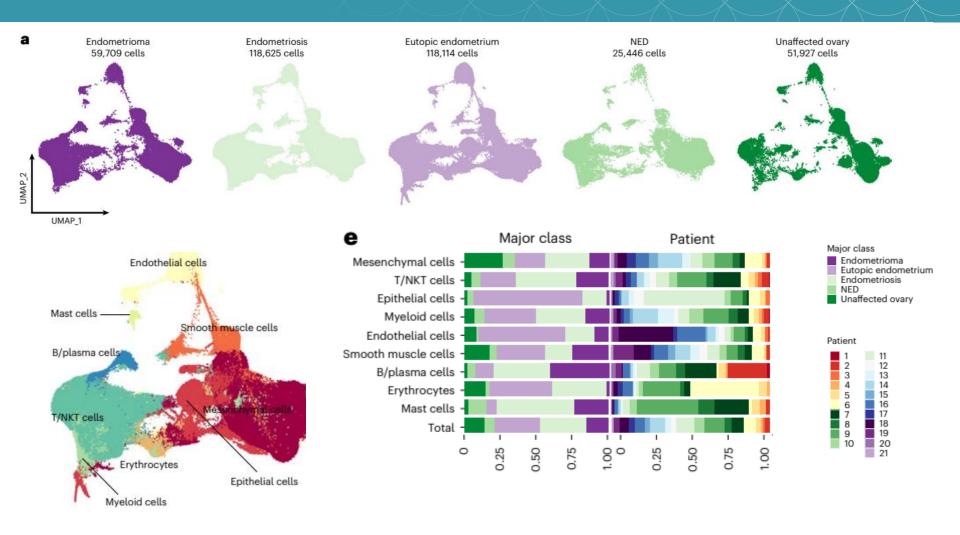
Accepted: 28 October 2022

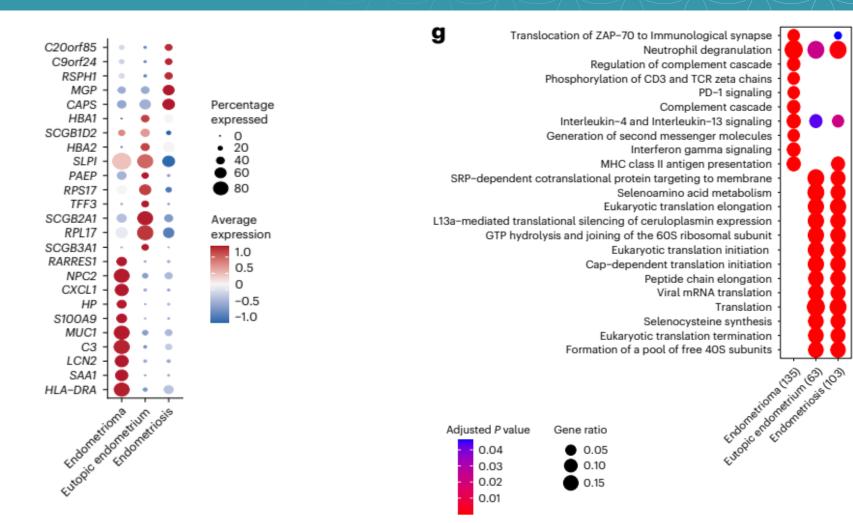
Published online: 9 January 2023

Check for updates

Marcos A. S. Fonseca^{1,2,18}, Marcela Haro^{1,2,18}, Kelly N. Wright^{3,18}, Xianzhi Lin ^{1,2,18}, Forough Abbasi^{1,2}, Jennifer Sun^{1,2}, Lourdes Hernandez^{1,2}, Natasha L. Orr⁴, Jooyoon Hong⁴, Yunhee Choi-Kuaea⁵, Horacio M. Maluf⁶, Bonnie L. Balzer⁶, Aaron Fishburn⁶, Ryan Hickey⁶, Ilana Cass ^{2,17}, Helen S. Goodridge^{7,8}, Mireille Truong³, Yemin Wang ^{4,9}, Margareta D. Pisarska^{10,11}, Huy Q. Dinh ^{12,13}, Amal EL-Naggar^{7,14}, David G. Huntsman^{4,9}, Michael S. Anglesio ^{4,15}, Marc T. Goodman⁵, Fabiola Medeiros ^{6,19}, Matthew Siedhoff^{3,19} & Kate Lawrenson ^{1,2,5,16,19}







Male Evaluation Semen Analysis

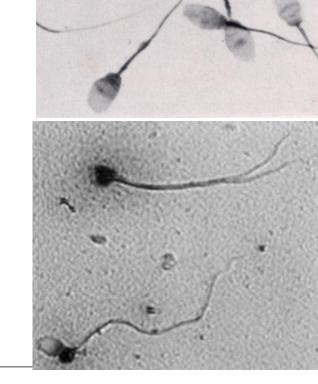
Volume

 \geq 1.5 cc

Conc.

 \geq 15M/ml

Progressive Motility


> 32%

Total Motility

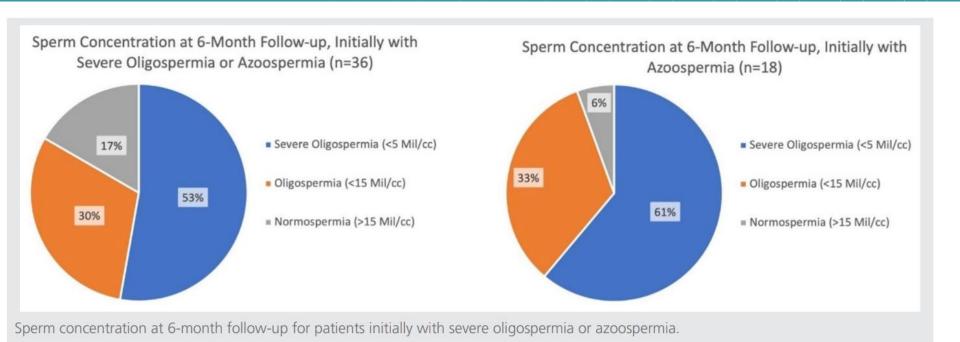
> 40%

Morphology

>3%

Male Evaluation – Fertile Male

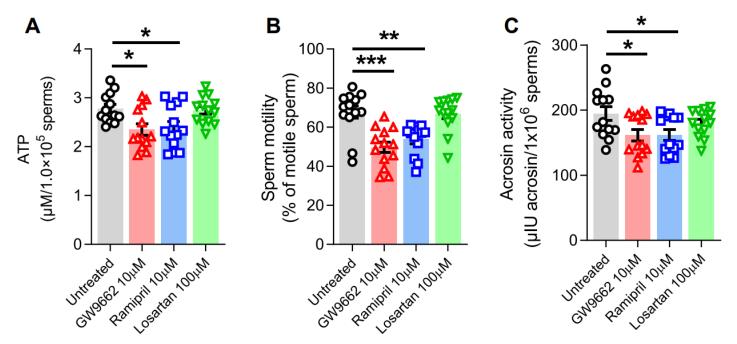
VARIABLE	SEMEN MEASUREMENT				
	CONCENTRATION	MOTILITY	MORPHOLOGY		
	×10-4/m1	%	% normal		
Fertile range	>48.0	>63	>12		
Indeterminate range	13.5 - 48.0	32-63	9-12		
Univariate odds ratio for infertility (95% CI)	1.5 (1.2-1.8)	1.7 (1.5-2.2)	1.8 (1.4-2.4)		
Subfertile range	<13.5	<32	<9		
Univariate odds ratio for infertility (95% CI)	5.3 (3.3-8.3)	5.6 (3.5-8.3)	3.8 (3.0-5.0)		


^{*}CI denotes confidence interval.

N=696 fertile N=765 infertile

- Extensive overlap between fertile and subfertile
- Strongest single predictor is morphology

Male Infertility and Anabolic Steroid Use



- Subsequent fertility
- 37.5% achieved a successful subsequent pregnancy
 - 33.3% used assisted reproductive technology
 - 66.7% conceived naturally

Ledesma. Fertility after AS use. Fertil Steril 2023.

Male Infertility and Medications

Figure 7. The metabolic and physiologic effect tACE in human sperm. Human sperm were treated for 12 h with either 10 μM GW9662 or 10 μM ramipril or 100 μM losartan and then (*A*) production of ATP, (*B*) motility, and (*C*) acrosine activity were determined as described in the Experimental procedures. Untreated samples were used as a control. Sperm representative motility video is shown in Video S2. Data are presented as means \pm SEM (n = 13/group). An one-way ANOVA with Bonferroni's correction for multiple comparisons was used to analyze group comparisons. *p < 0.05, **p < 0.01, and ***p < 0.001. tACE, testis angiotensin-converting enzyme.

Conclusion

- Initial Evaluation- conducted based on reproductive needs of the individual or couple
- Consider referral to Reproductive Endocrinology and Infertility Subspecialist
- •Cannabis use does alter reproductive function, additional studies are needed.
- •Social Media for healthcare information is largely created by non-healthcare professionals and overall video popularity is not correlated with video quality.
- Anabolic steroids and other medications impact sperm, even following discontinuation.

Moving towards precision medicine

- PCOS phenotyping is important it determines pregnancy outcomes
- Endometrial biopsy for endometrial receptivity is not recommended
- •Endometriosis is heterogenous and new treatments will need to be tailored to the type of disease.

Acknowledgements

- Pisarska Lab
 - Tania Gonzalez, PhD
 - Laura Eisman, MD
 - Amy Flowers, PhD
 - Bryn Willson, MD
 - Katherine VanHise, MD
 - Katherine Moran, MD
- Prenatal Biorepository
 - Allynson Novoa
 - Akhila Swarma
- Faculty
 - Erica Wang, MD MAS
 - Jessica Chan, MD MSCE
- Fellows
 - Bryn Willson, MD
 - Katherine VanHise, MD
 - Ally Kosturakis, MD
- CFRM Staff

- Maternal Fetal Medicine Division
 - John Williams III MD
- Division of Functional Genomics
 - Kate Lawrenson, PhD
 - Simon Gayther, PhD
- Pediatrics
 - Charles Simmons, MD
- University of Virginia
 - Charles Farber, PhD
 - Steve Rich PhD
 - Stephen Turner PhD
 - Alex Koeppel PhD
- Division of Endocrinology
 - Mark Goodarzi, MD PhD
- Lundquist Institute
 - Jerome Rotter, MD
 - Ida Chen, PhD
 - Kent Taylor, PhD
- UCLA
 - Hsian-Rong Tseng, PhD Funding:

R01HD074368, R01HD091773 (NICHD) U01EB02642 (NIBIB/NICHD) Helping Hand of Los Angeles, Inc.

Our patients for participating in our studies to improve outcomes!

