BRCA and Genetics in Gynecologic Malignancies

Disclosures

- Advisory board
 - Iovance
 - Clovis
 - AstraZeneca
- Data monitoring committee
 - Genentech

Objectives

- Review features of common hereditary gynecologic cancer syndromes
 - BRCA
 - Lynch syndrome
- Describe approaches to hereditary cancer risk assessment and genetic testing
- Understand current and evolving landscape of genetic testing in gynecologic cancer susceptibility syndromes
BRCA and Genetics in Gynecologic Malignancies

Sporadic
- Later age at onset (60s or 70s)
- Little or no family history of cancer
- Single or unilateral tumors

Inherited
- Early age at onset (<50)
- Multiple generations with cancer
- Clustering of certain cancers (i.e. breast/ovarian)

Autosomal dominant inheritance

Hereditary susceptibility to gynecologic cancers
- Hereditary Breast-Ovarian Cancer (BRCA1/BRCA2)
 - Ovarian cancer
- Lynch syndrome (MLH1/MSH2/MSH6/PMS2/EPCAM)
 - Endometrial cancer, ovarian cancer
- Cowden syndrome (PTEN)
 - Endometrial cancer
- DICER1 syndrome (DICER1)
 - Sertoli-Leydig cell tumors of the ovary
- SMARCA4 mutations
 - Ovarian small cell carcinoma, hypercalcemic type
- Peutz-Jeghers syndrome (STK11)
 - Ovarian sex cord tumors, cervical adenoma malignum
BRCA and Genetics in Gynecologic Malignancies

Suspect hereditary cancers when...

- Cancer in 2 or more relatives (on same side of the family)
- Early age of cancer diagnosis
- Multiple primary tumors
- Constellation of tumors consistent with cancer syndrome
 - Example: breast and ovarian cancers
- Family history is key!

Verify family history

Verbally reported pedigree

After review of pathology reports

Family histories are dynamic

Initial History

2 years later
Hereditary breast and ovarian cancer

Breast Cancer and Ovarian Cancer

- Sporadic
- Family clusters
- Hereditary

Genetic predisposition of ovarian cancer

2018 Estimated New Ovarian Cancer cases: 22,240

- 20-25% Hereditary disposition
- 15% Lynch syndrome
- 18-24%BRCA1
- 15-20%BRCA2
- 18-24% Other single genes
- 10%Lynch syndrome

Hereditary breast and ovarian cancer syndrome

BRCA1 and BRCA2
BRCA and Genetics in Gynecologic Malignancies

BRCA gene
- **BRCA** genes are tumor suppressor genes
 - Function in the DNA repair process
 - Single/double strand breaks, homologous recombination
 - General population: 1 in 300 to 800 carry the mutation
 - **BRCA** mutation may be discovered in new incident case
 - In ovarian cancer, 40% have no prior family history
 - Majority of mutations are deleterious
 - Protein is non-functional
 - Over 2000 separate mutations have been identified

BRCA associated cancers
- **Breast cancer**
 - ~5% of all breast cancers (20% of hereditary cases)
- **Ovarian cancer**
 - 9-24% of all epithelial ovarian cancer cases
 - Risk begins to rise at age 40 and sharply rises after age 50
- **Pancreatic cancer**
 - **BRCA** 2 carriers have a 3x increased risk and 7% lifetime risk of pancreatic cancer
- **Others**: Prostate cancer, melanoma
- Questionable association with serous uterine cancer

BRCA1
- Tumor suppressor gene on chromosome 17
- Autosomal dominant transmission
- Protein has role in genomic stability
- >600 different mutations reported

Breast Cancer Information Core

Nonsense • **Missense** • **Splice-site**
BRCA1 associated cancers

- Breast cancer 50-85% (often early age at onset)
- Second primary breast cancer 40%-60%
- Ovarian cancer 15-45%
- Possible increased risk of other cancers (eg, prostate)

BRCA2

- Tumor suppressor gene on chromosome 13
- Autosomal dominant transmission
- Protein has role in genomic stability
- ~450 different mutations reported

BRCA2 associated cancers

- Increased risk of prostate, laryngeal, and pancreatic cancers (magnitude unknown)
Guidelines for BRCA testing

- Women diagnosed with the following:
 - Epithelial ovarian, tubal, or peritoneal cancer (EOC)
 - Breast cancer
 - Diagnosed at age 45 years or less
 - Diagnosed at age 50 years or less with limited family history
 - And close relative diagnosed (<50 years) or EOC any age
 - And two or more close relatives with breast cancer
 - Two breast cancer primaries (first diagnosis before age 50)
 - Triple negative breast cancer at age 60 or less
 - Ashkenazi Jewish ethnicity
 - And close relative (<50 years) or EOC any age
 - And two or more close relatives with breast cancer
- Women unaffected with cancer with the following:
 - First degree or close relatives that meet the above criteria
 - Relative with a known BRCA mutation
 - Close relative with male breast cancer

Most informative to test an affected person
- If a harmful BRCA mutation is found, genetic counseling and cascade testing should be performed
- If this person is not available or declines, testing is appropriate with a suggestive family history
- Professional societies do not recommend testing for children (even if known mutation in family)
- Lack of risk-reduction strategies and should be deferred to adulthood
- Risks a BRCA associated cancer are extremely low

BRCA genetic testing

- Multiple panel options
 - **Will discuss specific later
- BRCA test: Classification of results
 - Positive
 - Negative
 - Variant of uncertain significance (VUS) or ambiguous
Interpreting the results: Positive
- Enhanced screening/surveillance
- Chemoprevention
- Prophylactic (risk reducing) surgery
- Cascade testing of family members

BRCA: Surveillance and risk reduction
- Breast cancer early detection/risk reduction
 - Breast awareness age 18
 - Clinical breast exam every 6-12 months starting age 25
 - MRI age 25-29y
 - MRI and mammography 30-75y
 - Individual management after age 75
 - Consider prophylactic mastectomy
 - Reduces breast cancer risk by ~90-95%
 - Consider chemoprevention (tamoxifen)
 - Possible screening for pancreatic cancer and melanoma

BRCA: Surveillance and risk reduction
- Ovarian cancer risk reduction
 - Bilateral salpingo-oophorectomy by age 35-40y
 - May delay to 45 with BRCA2
 - Pathology protocol with washings and serial sectioning
 - Residual risk of peritoneal cancer is ~1-6%
 - May reduce risk of breast cancer
 - Surveillance with annual transvaginal ultrasound with concurrent serum CA-125 (if decline/delay surgery)
 - No data to support reduction in mortality
 - Consider oral contraceptives
 - Reduce risk of ovarian cancer by ~50%
 - Discussion of risks versus benefits

22

NCCN guidelines Genetic/Genodermatological High Risk Assessment: Breast and Ovarian v.1.2017
23

24
BRCA and Genetics in Gynecologic Malignancies

BRCA associated ovarian cancers
- BRCA2 tend to have better prognosis/outcomes
- Germline or somatic BRCA mutations: PARP inhibitor maintenance therapy after frontline chemotherapy
- Treatment strategies
 - Recurrence
 - Maintenance

Surveillance recommendations

Males
- Breast cancer early detection
 - Breast self examination age 35
 - Clinical breast exam every 12 months starting age 35
- Prostate cancer early detection
 - PSA and digital rectal exam starting 45
 - Stronger recommendation for BRCA2 than for BRCA1 mutation carriers
- Possible screening for pancreatic cancer and melanoma

Interpreting the results: Negative
- If a close relative has tested positive, a negative result means the person does not carry that harmful mutation and cannot pass it on; general population risk
- If tested person has a suggestive family history, but tests negative, it may be a result of an as-yet unknown harmful mutation that has not been identified. There is a low likelihood of missing a known harmful mutation
- May be the result of a mutation in a non BRCA gene
Interpreting the results: VUS

- A change in BRCA1 or BRCA2 that has not been previously associated with cancer
- May occur in ~10% of women undergoing BRCA testing
 - Unclear prevalence in population
 - Unclear impact on protein function
 - Unclear association with disease
- Increased testing rates will help reclassify these results
 - Important to keep records

Lynch Syndrome

Hereditary susceptibility to colorectal cancer

Adapted from Burt RW et al. Prevention and Early Detection of CRC, 1996
Genetic features of Lynch Syndrome

- Genes: DNA mismatch repair (MMR) family
 - Mutations lead to microsatellite instability (MSI)
 - MMR proteins are missing (IHC useful), normally present
 - If protein is absent, gene is not being expressed
 - Mutation or methylation
 - Majority due to MLH1

Lynch syndrome

- Excluded if methylation
- Germline DNA testing is required if MLH is absent and no methylation
- Abnormal IHC (absent), considered MSI high
 - 90% of Lynch syndrome tumors are MSI
 - Better prognosis
 - Therapeutic target
 - Immunotherapy

Clinical features of Lynch Syndrome

- Age of diagnosis of colorectal cancer is ~45 years
- Tumor site in proximal colon predominates
- Extracolonic cancers
 - Endometrial
 - Ovarian
 - GI tract (stomach, pancreas)
 - Urinary tract (renal, ureter)
BRCA and Genetics in Gynecologic Malignancies

Lynch syndrome risks (up to age 70)

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Lynch syndrome</th>
<th>General Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon cancer (women)</td>
<td>18-61%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Endometrial cancer</td>
<td>16-61%</td>
<td>1-2%</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>5-10%</td>
<td>1%</td>
</tr>
<tr>
<td>Other LS cancers</td>
<td>5-10%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Family history is key

Guidelines for Lynch syndrome testing

- Personal history of endometrial or colon cancer
- Universal tumor testing with IHC
- Tumor testing on at-risk patients
 - Modified Bethesda guidelines
 - Colon or endometrial cancer less than 50 years old
 - Synchronous Lynch syndrome associated cancers
 - Colon cancer with MSI high and less than 60 years
 - Colon cancer in two or more first or second degree relatives
 - Tumor testing on tumors diagnosed prior to age 60
 - Lower costs

Guidelines for Lynch syndrome testing

- 1st degree relative with endometrial or colorectal cancer <60 years or at risk from systematic clinical screen
 - Pitfalls: Paucity of female family members, few individuals reaching advanced age, or family members who had hysterectomy/BSO
- Pattern of repeated generations of Lynch syndrome associated cancers
 - Especially those diagnosed <60 years
- From families with a known Lynch syndrome gene mutation
 - Regardless of degree of relation

Approach to Lynch syndrome testing

- All proteins present
 - MMR IHC
 - MLH1/PMS2 absent
 - Any other proteins absent
- Pos family hx
 - Consider additional testing – MSI and/or germline gene
- No family hx
 - Unlikely to be LS
 - MLH1 promoter methylation
 - Or...cut to the chase and start with germline
- Germline testing
 - Pos
 - Lynch
 - Unlikely to be LS – consider tumor seq
 - Neg
 - Lynch
 - Unlikely to be LS – consider tumor seq
 - Unlikely to be LS
 - Germline testing
 - Pos
 - Lynch
 - Unlikely to be LS – consider tumor seq
 - Neg
 - Lynch
 - Unlikely to be LS – consider tumor seq

Lynch syndrome: Surveillance/risk reduction

- Colon cancer
 - Colonoscopy every 1-2 years beginning at age 20-25
 - Or 2 to 5 years before earliest cancer diagnosis in family
- Genitourinary tract cancers
 - Urinalysis with cytology every 1-2 years beginning at age 25-35
- No screening but also at risk for the following tumors:
 - Pancreas, biliary tract, brain, small bowel, etc.
Lynch syndrome: Surveillance/risk reduction

- Endometrial and ovarian cancer
 - Endometrial biopsy every 1-2 years
 - Transvaginal ultrasound every year beginning at age 30
- Chemoprevention
 - Oral hormonal therapy (OCPs, progestin therapy)
 - Levonorgestrel intrauterine device
- Prophylactic hysterectomy and bilateral salpingo-oophorectomy after completion of childbearing
 - Post-operative primary peritoneal carcinoma has been observed but magnitude of risk is unknown

Cowden Syndrome

- Incidence: 1 in 200,000 (likely underestimated)
- Autosomal dominant inheritance
- PTEN Gene on chromosome 10q23
- Pathognomonic muco-cutaneous lesions
- Associated cancers:
 - Breast
 - Endometrial
 - Follicular thyroid
- Cancer risk management strategies

NCCN guidelines Genetic/Familial High Risk Assessment: Breast and Ovarian v.1.2017
Pilarski et al. JNCI; 2013;105:1607-1616

Evolution of genetic testing

<table>
<thead>
<tr>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990's</td>
<td>Single gene tests</td>
</tr>
<tr>
<td>2012</td>
<td>Single gene tests</td>
</tr>
<tr>
<td>2013</td>
<td>Many labs offer cancer genetics panels – variability in cost and number of included genes</td>
</tr>
<tr>
<td>Now</td>
<td>Targeted therapies: need to add to bulk testing, too</td>
</tr>
</tbody>
</table>

June 2013

NCCN guidelines Genetic/Familial High Risk Assessment: Breast and Ovarian v.1.2017
Multigene panel testing
- Genes other than BRCA1/BRCA2
- Current NCCN recommend multigene panel
 - When more than one syndrome suspected
 - When a person is negative for BRCA gene mutations but personal/family history is still highly suggestive
- Consider referral/consultation with genetic experts in the context of pre and post test counseling

Genetic testing
- Next generation sequencing: multi-gene panel testing
 - More labs and more options
 - Prices range from $249 - $4,500
 - Number of genes included ranges from 2-90**
 - Turn-around time ranges from 3-12 weeks
- Advantages:
 - Multiple genes tested
 - Lower costs that older techniques
 - Options to customize
- Disadvantages:
 - Finding of unknown gene mutations
 - Higher chance of ambiguous results
 - More genes≠better

Multigene panel testing
- Approximately 6-10% of patients who test negative for BRCA may have another known gene mutation
 - RAD51C
 - RAD51D
 - BRIP1
 - BARD1
 - PALB2
 - May or may not have evidence to support increased risk for hereditary cancer
 - Controversy with multi-gene panel testing versus BRCA specific testing
Non BRCA related ovarian cancer risks

<table>
<thead>
<tr>
<th>Gene</th>
<th>Relative Risk</th>
<th>Lifetime Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIP1</td>
<td>8-11</td>
<td>10-15%</td>
</tr>
<tr>
<td>RAD51D</td>
<td>6-12</td>
<td>8-15%</td>
</tr>
<tr>
<td>RAD51C</td>
<td>4-8</td>
<td>5-10%</td>
</tr>
<tr>
<td>PALB2</td>
<td>3-8</td>
<td>5-10%</td>
</tr>
<tr>
<td>Lynch Syndrome genes</td>
<td>Varies greatly by gene</td>
<td>5-10%</td>
</tr>
</tbody>
</table>

Knowledge continues to evolve – prospective follow up needed

Norquist et al. 2015; Rafnar et al. 2011, Ramus et al. 2015; Loveday et al. 2011, Peltari et al. 2011, Song et al. 2015, Loveday et al. 2012

Multigene panel mutations

- Breast MRI
- Discuss risk reducing mastectomy
- Recommend or consider risk reducing BSO

Brca1, Brca2, ATM, PTEN, CDH1, STR11, CHEK2, TP53, PALB2

NCCN in Annual Genes/Familial High Risk Assessment: Breast and Ovarian v.2.2016

Germline versus somatic mutations

- Germline genetic testing looks for inherited mutations
 - Usually a blood or saliva test
- Somatic genetic testing looks for mutations that occurred in the cancer cells
 - Tumor tissue tests/Liquid biopsies
 - No impact on family members
 - No known risk of other primary cancers
- Both may be important for therapeutic options
 - Germline or somatic BRCA mutations and PARP inhibitors
 - MSI high tumors and immunotherapy
Genetic Information Non Discrimination Act (GINA) 2008

- Prevents health insurers from denying coverage, adjusting premiums, or otherwise discriminating on the basis of genetic information.
- Group and self-insured policies
- Insurers may not request that an individual undergo a genetic test
- Employers cannot use genetic information to make hiring, firing, compensation, or promotion decisions
- Sharply limits a health insurer’s or employer’s right to request, require, or purchase someone’s genetic information

Conclusions and potential future directions

- Accurate family history is critical: Verify and update
- Genetic testing
 - Surveillance
 - Chemoprevention or risk reducing surgery
 - Cascade testing
- Identify targeted therapeutics based on mutation status
 - Better outcomes/less toxicities
- All cancer is genetic but may not be inherited
- Benefit of testing all women for BRCA mutations?
 - May prevent breast/ovarian cancer cases
 - Challenges: Penetrance differences, new genes/tests, invasive actions to reduce risk

A CANCER-FREE WORLD BEGINS HERE